

Climate services: a complex

landscape of (potential) users

ECOMS conference, Exeter, 5-7 October 2016

Marta Bruno Soares

m.soares@leeds.ac.uk

Outline

Why engage with the users?

UNIVERSITY OF LEEDS

Why this concern about engaging with the users?

- Non-linearity between climate science production – use of information;
- •Climate services applied science vs basic research (Sarewitz and Pielke Jr., 2007);
- Engaging users to increase credibility, legitimacy and saliency – enhance usability of climate science (McNie, 2007, Lemos et al., 2012);

"Every step of the sales process went perfectly except the part where the customer buys our product."

Image from: http://funnysalescartoons.com

Why engage with the users?

- Understand their climate information needs;
- Use their knowledge and expertise;
- Gather relevant information e.g. how decisions are made and how climate information is used;
- Improve usefulness and enhance usability of information;
- Forge collaborations;
- Test & evaluate products/services;
- ...

Who are the users?

Who are the users?

Heterogeneity and complexity of 'users' due to:

- •Nature of the organisation (e.g. private *vs* government organisation); geographical/sectoral scope;
- Different regulatory/institutional contexts;
- Complex organisational structures & myriad decisions...
- Role of individual in the org.: ≠ perceptions of needs;
- In-house capacity, expertise and resources available;
- Relative importance of climate information

Different concerns, expectations, resources, knowledge, and demands from science!

What do they need?

What do they need?

What other weather/climate information would be useful for your organisation to have in order to manage its operations and activities?

What do they need?

- Continuum of information No need for virtual wall between weather and climate information (Bokoye et al., 2014); e.g. LMTool prototype
- Information that **fit their needs** (Lemos et al., 2012):
 - Spatial and temporal scales;
 - Usable information;
 - Timeliness of information;
 - Relevant and accessible;
 - Accurate and reliable;
 - Credible and salient...
- But needs differ in space and time within/across organisations!

- <u>Context</u>: research-based, operational services, consultancy...
- <u>Catalyst</u>: co-production, service-driven, user-driven...

Typologies of interactions:

- Long standing/on-going collaborations/partnerships (e.g. placements, sharing of data) (cf. Haines & Stephens, forthcoming);
- Direct interactions/relationships (e.g. contract-based; research-based agreements; sharing of data btw org.);
- Internal interactions (e.g. data collected/shared internally);
- No direct interactions (e.g. access to online data).

Different motivations, expectations, resources, use of climate information...

Bruno Soares and Dessai (2016)

Communication

- Language and terminology
- Complex (scientific)
 language
- Assumptions!
- Uncertainty of information

Managing expectations and tensions

- Scientific rigour vs usability of information
- Different cultural backgrounds and experiences
- Disagreements

Knowledge, capacity and expertise

- Internal capacity and resources
- Knowledge of what's required
- Knowledge brokering/ translation

Ethics

Core values to climate services (Adams et al., 2015):

- Integrity,
- Transparency,
- Humility
- Collaboration

Moving forward

- Diversity of existing interactions between users and producers (and everyone else in between) – how to make most of these in the context of climate services?
- Non-linear and complex use of climate information not just about good science, need to understand context and factors enabling uptake and use of climate information;
- Importance of chains of provisions and feedback loops: value added to information (moving from data to knowledge); role of intermediary organisations/individuals in the chains of provision;
- Models of co-production? What works and what doesn't?

Moving forward

- Further efforts on mapping users, interactions, and chains of information provision – synthesising existing information from range of EU projects and initiatives;
- How to go beyond the 'usual suspects' and reach other users?
- Users want a continuum of information how to forge stronger linkages between (and within) climate and weather communities (cf. Bokoye et al., 2014);
- Developing a climate services market and catering for diverging needs – winners & 'losers';
- Organisation and multi-level integration of climate services in Europe? Linkages with adaptation services?

Thank you!

References

Adams et al. 2015. Toward an ethical framework for climate services. Climate Services Partnership.

Bokoye, A., et al. (2014). Canadian climate services: exploring an appropriate road map to fulfill a growing need. *Bulletin of the American Meteorological Society*, *95*(1), ES07-ES10. Bruno Soares, M. & Dessai, S. (2016). Barriers and enablers to the use of seasonal climate forecasts amongst organisations in Europe. *Climatic Change*.

Dessai, S. and Bruno Soares, M. 2015. D12.3: Report summarising users' needs for S2D predictions. EUPORIAS project.

Haines, S. and Stephens, L. (Forthcoming). Partnerships in weather forecasting: development, distance and dialogue.

Lemos, M. et al. (2012). Narrowing the climate information usability gap. *Nature Climate Change*, 2(11), 789-794.

McNie, E. C. (2007). Reconciling the supply of scientific information with user demands: an analysis of the problem & review of the literature. *Env. Science & Policy*, *10*(1), 17-38. Sarewitz, D., and Pielke, R. A. (2007). The neglected heart of science policy: reconciling supply of and demand for science. *Env. science & policy*, *10*(1), 5-16.