Perturbing the atmosphere in coupled seasonal forecasts: lessons from CNRM-CM and EC-Earth

Lauriane Batté (1), Michel Déqué (1) and Francisco J. Doblas-Reyes (2,3)

(1) CNRM, Large-Scale Modelling and Climate Group (2) BSC/CNS-Earth Sciences (3) ICREA

A tale of two methods... and two models

Stochastic dynamics (Batté and Déqué 2012)

- Correction-perturbation of model prognostic variables
- Randomly substracting a priori estimated model errors
- Non-gaussian uncentered perturbations
- Consistency in space and between variables

SPPT (Palmer et al. 2009)

- Random perturbations of physical parametrization tendencies
- White noise with AR(1) regression in time
- Consistency in time and space (combination of patterns)
- Track record of improving spread and forecast quality (Weisheimer et al. 2014)

Two seasonal prediction systems based on different GCMs

- CNRM-CM (Voldoire et al. 2013) : post-CMIP5 version with ARPEGE v6 (prognostic physics)
- EC-Earth v3.0.1 (Hazeleger et al. 2010)

Presentation outline

The "stochastic dynamics" technique

Forecast system development : what next?

Stochastic dynamics in CNRM-CM

Estimation of the perturbation population

- Nudged coupled seasonal re-forecast run : NDJF 1979/80–2012/13
- Weak nudging (τ = 1 month) of temperature, vorticity and specific humidity in the atmosphere towards ERA-Interim
- Tapering in the upper and lower levels of the atmosphere

•
$$\delta X(t) = \frac{X^{\text{ref}}(t) - X(t)}{\tau}$$
 stored each day

SPECS

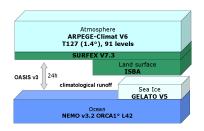
Nudging

$$\frac{\partial X}{\partial t}(t) = \mathbf{M}(X(t), t) + \frac{X^{\text{ref}}(t) - X(t)}{\tau}$$

In-run perturbations

- Use $\delta \tilde{X}$, correction term from another year, as a perturbation for time *t* in seasonal re-forecast for year *y*
- Different sets of corrections are drawn for each ensemble member
- Corrections are simultaneous for the three fields, drawn from other years of the re-forecast period, within the same calendar month

Perturbations


$$\frac{\partial X}{\partial t}(t) = \mathbf{M}(X(t), t) + \delta \tilde{X}(t)$$

Coupled seasonal re-forecasts with CNRM-CM

Boreal winter (NDJF) ensembles

- REF : reference coupled model experiment without perturbations
- "Stochastic dynamics" experiments :
 - SMM : random monthly mean corrections of ARPEGE tendency errors applied to each member S5D : random sequences of five consecutive days of error corrections applied to each member
- 30-member ensembles; NDJF 1979/80–2012/13 re-forecast period (34 years)

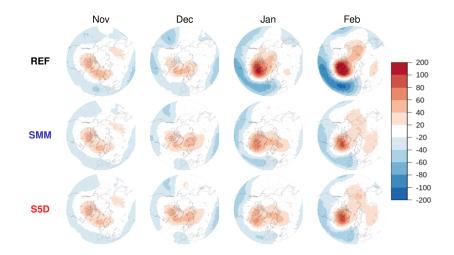
Components of the CNRM-CM system (Voldoire et al. 2013)

SPECS

Initialization

- Atmosphere : ERA-Interim (Dee et al., 2011)
- Ocean : NEMOVAR reanalysis

Evaluation


- ERA-Interim as reference
- CRU for surface temperature over land

・ロト ・回ト ・ヨト ・ヨト

FRANCI

• Deterministic and probabilistic forecast quality

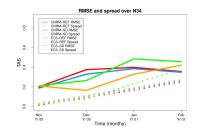
Impact on Z500 bias development

Mean evolution of Z500 bias according to forecast time over the 1979/80–2012/13 re-forecast period for experiments REF, SMM and \$50 SPECS ECOMS International Conference - Exeter - October 2016

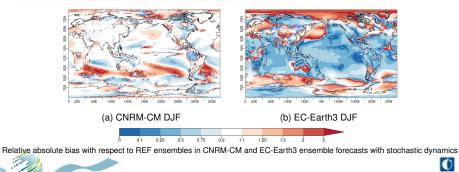
Weather regime statistics and NAO skill

	NAO+		Blocking		NAO-		Atl. Ridge		NAO index
Run	Freq.	Length	Freq.	Length	Freq.	Length	Freq.	Length	r
ERA-I	32.1%	9.48	24.4%	7.14	18.8%	9.27	16.6%	5.85	-
REF SMM S5D	26.5% 28.0% 28.0%	8.28 8.36 8.35	23.4% 23.8% 23.8%	6.56 6.78 6.97	24.0% 21.8% 21.9%	8.90 9.35 9.16	16.8% 17.1% 17.1%	6.41 6.38 6.38	0.41 0.38 0.54

- Perturbations generally improve weather regime frequency when compared to ERA-Interim statistics
- They also improve the regime residency w.r.t. REF even when it is too short
- Very little difference is found between both methods
- NAO skill is best with S5D


Impact in EC-Earth

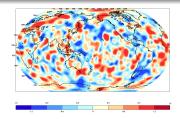
Experiments


• EC-Earth 3.0.1 with IFS cy36r4

SPECS

- Gridpoint nudging of T, q, u, v; $\tau = 4$ days
- Compared to CNRM-CM run with stronger au (15 days for T,q and 5 days for Ψ)
- NDJF 1993-2009 with GLORYS ocean reanalyses

< ロ > < 同 > < 回 > < 回 >

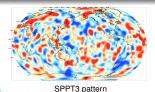

The SPPT method

Description

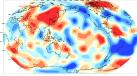
- Method developed at ECMWF (Buizza et al., 1999; Palmer et al., 2009)
- Random multiplicative coefficients applied to physical tendencies of atmospheric variables
- $X_{\rho} = (1 + \mu r)X_c$; with X = u, v, T, q
- Spectral coefficients of r are defined by an AR(1) process forced with gaussian random numbers; µ is used to taper perturbations close to the surface and in the stratosphere

r patterns

- Space and time decorrelation scales
- Several patterns can be linearly combined
- Same r for all variables and model levels


Sets of experiments for SPPT in EC-Earth3

Reference experiment


- T255L91 atmospheric resolution, ORCA1L46 ocean resolution
- 10 member ensemble, startdates May and November 1993-2009
- Verified against ERA-Interim reanalysis data

SPPT experiments with different amplitudes in patterns

Name		Scale 1			Scale 2			Scale 3	
	σ	Δx	Δt	σ	Δx	Δt	σ	Δx	Δt
		(km)	(days)		(km)	(days)		(km)	(days)
SPPT3	0.125	2000	30	0.250	1000	3	0.500	500	0.25
SPPT2L	0.288	2000	30	0.173	1000	10	-	-	-

SPECS

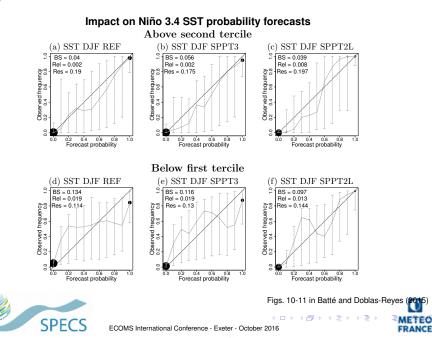
SPPT2L pattern

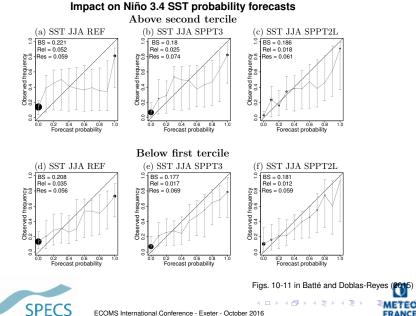
< ロ > < 同 > < 回 > < 回 >

Impact on SST prediction : ensemble spread

140E 100F 180 1400 10000 6000 100E 140E 180 14 W 100// enw. (a) SST DJF SPPT3 (b) SST JJA SPPT3 100E 140E 180 140W 100E 140E 100W (c) SST DJF SPPT2L (d) SST JJA SPPT2L 0 75 0.85 0.9 0.95 1.05 1.15 1.25 1.5

Relative spread with respect to REF experiment


Adapted from Fig. 5 in Batté and Doblas-Reyes (2015)

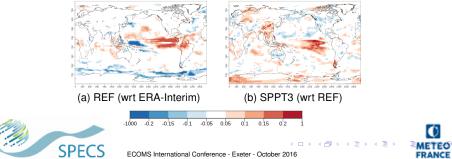


イロト イロト イヨト イヨト

Impact on SST prediction : probabilistic scores

Impact on SST prediction : probabilistic scores

vis international Conference - Exeter - Octo


Impact in CNRM-CM

SPPT in CNRM-CM

- Slightly updated version wrt SD experiments (ARPEGE v6.2 T255L91)
- SPPT perturbations of u and v physical tendencies only
- Evaluation for boreal winter over 1979-2012 re-forecast period

Name		Scale 1			Scale 2			Scale 3	
	σ	Δx	Δt	σ	Δx	Δt	σ	Δx	Δt
		(km)	(days)		(km)	(days)		(km)	(days)
SPPT3	0.125	2000	30	0.250	1000	3	0.500	500	0.25

Impact on RMSSS for DJF near-surface temperature

Tentative summary...

Impact of both methods on model bias and forecasting skill (DJF)

	Stochastic o	lynamics	SPPT		
	Mid lats	Tropics	Mid lats	Tropics	
EC-Earth	limited	Bias improved Skill unchanged	patchy	SST bias increase (except Eq. Pacific) Skill improved	
CNRM-CM	Z500 bias improved Modest Z500/NAO skill increase	Depends on $ au$ Skill unchanged	patchy	SST bias increase (except Eq. Pacific) ENSO skill improved	

What next?

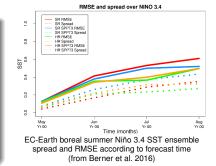
Future improvements

Multiple layers of complexity

- These conclusions are for one component of the GCMs, one method at a time !
- Non-linear adverse effects, compensation effects
- High uncertainties in (most) skill evaluations due to limited ensembles and hindcast lengths

< ロ > < 同 > < 回 > < 回 >

- Perturbations may be as (more ?) relevant elsewhere : ocean component (Brankart et al. 2015; Andrejczuk et al. 2016), sea ice (Juricke et al. 2013), land surface (MacLeod et al. 2012), coupling processes (Williams 2012)
- Combining methods requires a step-by-step assessment, bearing in mind possible cancellation/saturation of effects and tuning requirements
- Improvements to SPPT (correct energy budget, iSPPT)



What next?

Results are not only model-dependent and method-dependent...

But also resolution dependent !

- EC-Earth3 with high resolution atmosphere (T511L91) and ocean (ORCA0.25)
- SPPT (same settings) is still efficient to generate spread
- Higher resolution is more efficient in improving the model RMSE (Prodhomme et al. 2016)

Food for thought

- Tradeoff between computational cost and gain in forecast quality
- Tuning : high resolution version here was not optimally tuned (IFS with T255L91 settings)
- Both high resolution and stochastic perturbations must be implemented alongside continued efforts in model development (physical parameterizations, dynamics, initialization techniques)
- Beware of hasty conclusions !

Thank you for your attention !

Batté L. and M. Déqué (2016) : Randomly correcting model errors in the ARPEGE-Climate v6.1 component of CNRM-CM : applications for seasonal forecasts. *Geosci. Model Dev.* 9 : 2055-2016, DOI : 10.5194/gmd-9-2055-2016

Prodhomme C., L. Batté, F. Massonnet, P. Davini, O. Bellprat, V. Guemas, and F. Doblas-Reyes (2016) : Benefits of increasing the model resolution for the seasonal forecast quality in EC-Earth. J. Climate. DOI : 10.1175/JCLI-D-16-0117.1, in press.

Berner J. et al. (2016) : Stochastic parameterization : towards a new view of weather and climate models. Bull. Am. Met. Soc. DOI : 10.1175/BAMS-D-15-00268.1, in press.

Batté L. and F. Doblas-Reyes (2015) : Stochastic atmospheric perturbations in the EC-Earth3 global coupled model : impact of SPPT on seasonal forecast quality. *Clim. Dyn.* 45 : 3419-3439, DOI : 10.1007/s00382-015-2548-7

ECOMS International Conference - Exeter - October 2016

FRANCE