New results from the Irminger Sea: deep convection and the Irminger Current between 2014-2015

Femke de Jong^{1,3}, Stelios Kritsotalakis⁴, Laura de Steur^{1,2}
1) Royal Netherlands Institute for Sea Research NIOZ (The Netherlands),
2) Norwegian Polar Institute NPI (Norway), 3) Duke University (USA),
4) Institute for Marine & Atmospheric research Utrecht IMAU (The Netherlands)

The subpolar gyre and the Irminger Sea

Continuous ocean measurements within NACLIM

Atlantic transport arrays # 1-4 EGC shelf array # 5 Overflow arrays #6-8 Central avre

Central gyre moorings # 9–11

DWBC array # 12

Courtesy: Clare Johnson (SAMS)

Overturning of the Subpolar North Atlantic Program (OSNAP)

USA, UK, Canada, Germany, Netherlands, France, China 2014–2018 (www.o-snap.org)

Overturning of the Subpolar North Atlantic Program (OSNAP)

USA, UK, Canada, Germany, Netherlands, France, China 2014–2018 (www.o–snap.org)

Cruise 64PE400 July 2015

Irminger Sea mean hydrography 1990s vs 2000s

Irminger Sea mean hydrography 1990s vs 2000s

Våge et al., 2011

Irminger moorings deployed in 2014

Background: absolute geostrophic velocity (Våge et al., 2011)

Irminger moorings deployed in 2014

Background: absolute geostrophic velocity (Våge et al., 2011)

Time series of potential vorticity (PV) and heat flux (HF) in the Irminger Gyre

Time series of potential vorticity (PV) and heat flux (HF) in the Irminger Gyre

Deepest convective MLD since 2003 found in winter 2014-2015 Associated with a large atmospheric heat flux and a positive NAO

Irminger Sea hydrography & velocity 2015

Newly and locally formed Labrador Sea Water A single Irminger Current (IC) core

Irminger Sea hydrography & velocity 2015

Newly and locally formed Labrador Sea Water A single Irminger Current (IC) core

Temperature evolution in the upper 1 km in the Irminger Gyre from a 1-D model

<u>Red:</u> temperature evolution from the 1-D model $H_{\rho}C_{p}$ (dT/dt) = Qsfc + Qadv using North American Regional Reanalysis (NARR) surface fluxes

GIS ice sheet melt & shut down deep convection?

ARTICLE

Received 24 Jun 2015 | Accepted 22 Dec 2015 | Published 22 Jan 2016

DOI: 10.1038/ncomms10525

525 OPEN

Recent increases in Arctic freshwater flux affects Labrador Sea convection and Atlantic overturning circulation

Qian Yang¹, Timothy H. Dixon¹, Paul G. Myers², Jennifer Bonin³, Don Chambers³ & M.R. van den Broeke⁴

The Atlantic Meridional Overturning Circulation (AMOC) is an important component of ocean thermohaline circulation. Melting of Greenland's ice sheet is freshening the North Atlantic; however, whether the augmented freshwater flux is disrupting the AMOC is unclear. Dense Labrador Sea Water (LSW), formed by winter cooling of saline North Atlantic water and subsequent convection, is a key component of the deep southward return flow of the AMOC. Although LSW formation recently decreased, it also reached historically high values in the mid-1990s, making the connection to the freshwater flux unclear. Here we derive a new

GIS ice sheet melt & shut down deep convection?

GIS ice sheet melt & shut down deep convection?

Irminger Sea section 2014 vs 2015

2014

2015

Double Irminger Current core (similar to 2000s)

single Irminger Current core (similar to 1990–1995)

Irminger Sea section 2014 vs 2015

2014

2015

Double Irminger Current core (similar to 2000s)

single Irminger Current core (similar to 1990–1995)

Irminger Sea section 2014 vs 2015

2014

2015

Double Irminger Current core (similar to 2000s)

single Irminger Current core (similar to 1990–1995)

Irminger moorings deployed in 2014

Background: absolute geostrophic velocity (Våge et al., 2011)

Irminger moorings deployed in 2014

Background: absolute geostrophic velocity (Våge et al., 2011)

Potential density increase upper ocean Jan 2015

Absolute Dynamic Topography

The Irminger Current

Aug-Oct 2014

Feb-Apr 2015

Aug-Oct 2014

Feb-Apr 2015

The Irminger Current

The Irminger Current

Volume transport Irminger Current 2014-2015

Volume transport Irminger Current 2014-2015

Exceptional strong winter 2014-2015 during a positive
 NAO led to very deep convection in the Irminger Sea

- Exceptional strong winter 2014-2015 during a positive
 NAO led to very deep convection in the Irminger Sea
- LSW was produced locally and filled the Irminger basin

- Exceptional strong winter 2014-2015 during a positive
 NAO led to very deep convection in the Irminger Sea
- LSW was produced locally and filled the Irminger basin
- The IC displayed a single core in July 2015 similar to the conditions observed in the 1990s

- Exceptional strong winter 2014-2015 during a positive
 NAO led to very deep convection in the Irminger Sea
- LSW was produced locally and filled the Irminger basin
- The IC displayed a single core in July 2015 similar to the conditions observed in the 1990s
- However, the IC shows <u>very large</u> variability, particularly during winter

- Exceptional strong winter 2014-2015 during a positive
 NAO led to very deep convection in the Irminger Sea
- LSW was produced locally and filled the Irminger basin
- The IC displayed a single core in July 2015 similar to the conditions observed in the 1990s
- However, the IC shows <u>very large</u> variability, particularly during winter
- One-year mean transport of IC was 9 Sv, which is lower than earlier estimates from the 90s and 00s

The research leading to these results has received funding from the European Union 7th Framework Programme (FP7 2007-2013), under grant agreement n.308299 NACLIM <u>www.naclim.eu</u>