
Research Papers
Issue 2011
December 2011

Scientific Computing and
Operation (SCO)

Green Computing: Design of a
reactive monitoring solution for
power saving

By Osvaldo Marra
CMCC

University of Salento, Italy
osvaldo.marra@unisalento.it

Maria Mirto
CMCC

maria.mirto@cmcc.it

Massimo Cafaro
CMCC

University of Salento, Italy
massimo.cafaro@unisalento.it

and Giovanni Aloisio
CMCC

University of Salento, Italy
giovanni.aloisio@unisalento.it

SUMMARY The report describes the design of a system that can monitor
the load on the Calypso IBM Power 6 cluster and act on different nodes
turning them on and off according to their load (in terms of jobs), scheduled
by LSF. The system is able to collect and analyze information about the
cluster (queues, jobs, and hosts) in order to decide its course of action.
After data collection and analysis, the system can take one of the following
actions: 1) turn off n nodes, 2) turn on n nodes, and 3) do nothing. The
system then waits for a time interval defined by the user before checking
again the current state. The entire logic consists, then, in a series of steps
that are repeated periodically at regular intervals of time in a loop.



02

C
en

tro
E

ur
o-

M
ed

ite
rr

an
eo

pe
r

iC
am

bi
am

en
ti

C
lim

at
ic

i

CMCC Research Papers

INTRODUCTION

The fast hardware evolution in recent decades
has led to processors increasingly smaller and
faster, with a strong increase in power dissipa-
tion for the calculation: while a 486 dissipated
about 10 watts, the Pentium IV dissipated 120
watts, with an energy consumption increased
by an order of magnitude. To get an idea of the
energy consumed by IT systems it is sufficient
to consider that modern blade servers consume
about 1kW (as much as a home air conditioner
running at full power). Consequently, a rack
of blade servers, for example, consisting of 5
shelves with 8 units each, consumes 40 kW,
the equivalent of a building. A medium-sized
data center consumes about 250 kW, as a dis-
trict, while a large data center, can consume
even more than 10 MW, the equivalent of a
small town. In modern data centers, one of the
strategic objectives is to reduce energy con-
sumption, by means of Green Computing. We
have designed, built and tested a software that
can monitor the load of the IBM Calypso clus-
ter, and act on different nodes turning them
on and off according to their load (in terms
of jobs), scheduled by LSF. Our aim, if pos-
sible, is trying to reduce the cluster energy con-
sumption, which amounts to about 2000 euros
per day. Moreover, turning off the unallocated
nodes also implies a lowering of the heat pro-
duced with consequent cost savings with re-
gard to the cooling system. The architecture
on which this work has been done is the Ca-
lypso IBM cluster, consisting of 30 IBM P575
nodes each of which is equipped with 16 dual
cores Power 6 processors operating at a fre-
quency of 4.7 GHz. Therefore, the number of
physical cores amounts to 2 * 16 * 30 = 960
cores, capable of providing a computing power
of about 18 TFLOPS. All this computing power
is combined with a capacity of data storage of
about 1.5 petabytes - or 1536 terabytes.

Determining course 

of actions

Start

Check status

Switch off n 

nodes

Wait a T 

second

Switch on n 

nodes

No action

Figure 1:
Flow chart of the system

A REACTIVE MONITORING
ALGORITHM

Analyzing the architecture of the IBM cluster
and the local LSF scheduler, we identified the
data to be monitored and the APIs required to
extract this information. The design phase has
produced a series of flow charts, providing an
overview of the logic of the proposed algorithm.
The goal of the algorithm is to act on the nodes
(turning them on and off) as required, to save
energy. The algorithm’s logic to achieve this
goal is summarized by the flow chart in Figure
1.

Checking the current state represents the first
logical block, covering the collection and analy-
sis of information to be used later to decide the
course of action. The elements to be analyzed,
in order, are:

1. Queues;

2. Jobs;

3. Hosts.

After collecting and analyzing the required infor-
mation, the system can react with the following
actions:



Green Computing: Design of a reactive monitoring solution f or power saving

03

C
en

tro
E

ur
o-

M
ed

ite
rr

an
eo

pe
r

iC
am

bi
am

en
ti

C
lim

at
ic

i

Turn off n nodes;

Turn on n nodes;

Do nothing.

The system then waits for a time interval de-
fined by the user before checking again the
current state. The entire logic consists, then,
in a series of steps that are repeated periodi-
cally at regular intervals of time in a loop. We
have described how the algorithm works at an
high level of abstraction; in the following we will
provide details related to the different blocks of
the flow chart, which will make clear the algo-
rithm’s internals. We begin by delving into the
details of how the cluster’s state is checked.

STATUS CHECK

To recover the required information we start
analyzing the system-level queues available to
LSF, listed below:

poe sys;

poe tests;

poe short;

poe medium;

poe long;

poe serial;

poe serial highmem.

Each of these is characterized by different prop-
erties, and we collect and store the most rel-
evant information. Indeed, only few data are
essential for the subsequent phases in which a
decision should be taken:

number of pending job slots;

maximum run-time set;

list of available resources (hosts assigned
to a queue);

list of users authorized to run jobs on the
queue.

After the queues we analyze job information
collecting and storing the following data. For
each job running:

job ID;

username of the user who submitted the
job;

number of job slots allocated;

list of the hosts allocated;

start time of the job;

the queue on which it is running.

For each pending job:

job ID;

username of the user who submitted the
job;

number of required job slots;

submission options (ptile = ...,-X - exclu-
sive mode);

resources (nodes and cores) require-
ments;

the queue on which it has been submitted.

The last information required is related to the
hosts. At first we must fetch the list of available
hosts. Then, each host must be analyzed in
order to retrieve this information: status of the
host (available using the APIs or running from
the command line bhosts-w):



04

C
en

tro
E

ur
o-

M
ed

ite
rr

an
eo

pe
r

iC
am

bi
am

en
ti

C
lim

at
ic

i

CMCC Research Papers

Not available (unavailable as a node is
powered off or not reachable);

Closed Adm (the administrator closed it
for maintenance);

Closed Excl (closed with a run in exclu-
sive mode);

Closed full (closed because all of the
cores have been allocated);

No license for LSF;

Operating with some or all of the re-
sources available (status = ok);

number of job slots available;

number of job slots running.

The step in which the algorithm performs a
check of the current state provides an instanta-
neous snapshot overview of the system through
the data characterizing the cluster operation,
that are stored for use in the next step (when
the algorithm decides what to do next). Fig-
ure 2 represents a flow chart synthesizing the
previous discussion.

ACTIONS BASED ON COLLECTED
DATA

When a job is submitted through the bsub com-
mand, LSF checks the availability of resources
by comparing them with the user’s request and,
if resources are available, it allocates on each
host a number of job slots (cores) whose sum
equals the total number of cores requested;
it then actually start the job. Often, the num-
ber of required resources exceed those avail-
able and a job becomes pending. Other times
the opposite situation occurs, the number of
available resources exceed those required and
some nodes are turned on but are not running
any job. In both cases is required a software’s

Start

Analysis of the 
queues status

Store queue 
data 

Analysis of 
jobs status

Analysis of each job

Analysis of hosts 
status

Store hosts data

Figure 2:
Flow chart of the Status Check phase

intervention, taking into account the manage-
ment policies, which could turn on (in the first
case) or off (in the second case) cluster nodes.
The action to be taken is determined by the
data related to queues, jobs, and hosts pre-
viously collected. Among those affecting the
queues is the number of pending job slots that
can be 0 or greater than 0. We analyze both
cases.

CASE 1: PEND = 0

In this case, the first thing to do is to check
the status information (retrieved earlier) of indi-
vidual nodes (hosts) to determine which ones
have jobs running and which are turned on (on-
line) but idle owing to job slots not allocated.
The latter nodes, are candidates for shutdown
(Figure 3) if these are not service nodes. For
each node which is candidate to shutdown, we
check that it persists in this state for more than
half an hour (as required by the Calypso sys
admin). If yes, we can then proceed to switch
off the node.

We select a job from the list of pending jobs, and



Green Computing: Design of a reactive monitoring solution f or power saving

05

C
en

tro
E

ur
o-

M
ed

ite
rr

an
eo

pe
r

iC
am

bi
am

en
ti

C
lim

at
ic

i

Select a node among 
those switched on

Read node status 
data

 Register it as a 
candidate for power off

Select next node among 
those not yet analyzed 

and switched on

Power off the 
node

Are there jobs 

running?

Is a service node?

Does it persist in this 

status since at least 

half an hour?

Yes

Yes

Yes

No

No

No

Case 
PEND = 0

Figure 3:
Case PEND = 0 flowchart

determine how many nodes are required for its
execution. The information required includes:

1. Total number of cores required by the
pending job;

2. Number of cores available on the cluster
nodes currently turned on;

3. The command line options of the bsub

command used to submit the job:

-X: This is a request for exclusive
execution, i.e., no other job can be
running on the same cores utilized
by the job;

-R-span [ptile = k]: The ex-
ecution requires, mandatorily, k

cores per host (node); For ex-
ample: -n 10 -R span[ptile=2]
/home/user/application requires ex-
ecution on 5 different hosts, using 2
cores per host.

4. Number of jobs that are running, which
are deemed to complete their execution
"at most" in an hour.

The number of jobs that are running, which are
deemed to complete their execution "at most" in
an hour, is very important, being part of the poli-
cies adopted to compute the number of nodes
to be turned on. Each queue has a runtime
limit parameter that represents the maximum
time a job can be running on the queue; once
the runtime limit has elapsed for a job, if it is still
running LSF kills it abruptly. This information
is used to determine the number of nodes to
be switched on, since we take into account the
cores that will soon be available. The analysis
continues with the next pending job in the list.
If the list is empty, we have collected all of the
required data.

CASE 2: PEND > 0

Described in Figure 4.

We have already said that idle nodes are not
immediately turned off; instead, they are sim-
ply candidates to shutdown and actually turned
off if they persist being idle for at least half
an hour. Here is why. Suppose that, hav-
ing collected and processed the data, our al-
gorithm decides to turn off 3 nodes which are
immediately shut down. After a few minutes,
a user submits a job that can not be immedi-
ately scheduled because the number of cores
requested is not available, so that the job state
is pending. During the next status check the
algorithm analyzes the state of the job and (if
possible) it turns on a certain number of nodes
to allow the job transition to the running state.
After the job execution, if there are no other jobs
requiring the resources of the nodes that have
been turned on, these nodes are again turned
off. The scenario described could occur several
times resulting in continuous alternating phases



06

C
en

tro
E

ur
o-

M
ed

ite
rr

an
eo

pe
r

iC
am

bi
am

en
ti

C
lim

at
ic

i

CMCC Research Papers

Case 
PEND > 0

Are all of the cluster 

nodes switched on?

Can we switch on 

powered off 

nodes ?

No action

Select a pending 
job

Determine which nodes can 
be switched on

Are there jobs 

terminating 

execution within an 

hour?

Those nodes can be 

used by the job?

Do not consider those nodes 
for power on 

Store the number of nodes 
that must be switched on 

Determine the number of 
nodes associated to the job 
queue which can be switched 

on

The number of nodes 

that must be switched on is less 

than the number of those which 

can be switched on?

Switch on all nodes of the 
queue which can be switched 

on 

Are there other jobs 

pending?

Switch on 
required nodes

End

Yes

No

Yes

No

No

No

Yes

Yes

Yes

Yes

No

No

Figure 4:
Case PEND > 0 flowchart

in which nodes are turned on and off with con-
sequent delays related to the execution of jobs
and overhead caused by the hardware checks
performed upon turning on a node to verify that
the node is fully operational. Indeed, switch-
ing on a node takes a relatively long time on
average when compared to a normal desktop
computer starting up. The factor that justifies
such a long time lies in the hardware, which is
very sophisticated and complex, requiring the
execution of many checks at startup in addition
to the system routines and LSF procedures al-
lowing the node to be inserted in the current list
of active nodes managed by the cluster.

To cope with the problem, the algorithm pro-
ceeds to switch off a node when it has been
idle for at least 30 minutes. This temporal pa-
rameter is chosen by the sys admin.

IMPLEMENTATION

The software runs in background, implemented
as a daemon. Retrieving the information re-
quired to the algorithm is down through the LSF
C APIs, provided by a set of developer libraries
to interact with the scheduler. We have im-
plemented our own APIs as a set of library to
simplify information retrieval and to support the
decisional process.

DATABASE DESIGN

The data we collect must be stored in order
to allow faster retrieval in the many different
phases of the algorithm, and for bookkeeping
purposes. The database design must take into
consideration the observations we made pre-
viously when defining the data to be retrieved.
Furthermore, the database must be able to han-
dle temporal data, in order to support the cre-
ation of logs, the access to historical data which
will be subject to statistical analysis and will also
allow monitoring the daemon to control the cor-
rectness of its operations.



Green Computing: Design of a reactive monitoring solution f or power saving

07

C
en

tro
E

ur
o-

M
ed

ite
rr

an
eo

pe
r

iC
am

bi
am

en
ti

C
lim

at
ic

i

job_pending
is 

associated 

to

queue
is 

associated 

to

is used by

user

can execute 

jobs on

ptile

id

jobid

job_slots_required

exclusive_execution

id

name
max_runtime

host

id

name
max_nt_job_slots

job_slots_runningrlb

status

is classified 

as

host_candidate

id

job_running

id

start_time

jobid

is running on 

a

job_slots_allocated

idname

0, N

0, 1

0, 1 0, N

0, N
0, N

0, N

0, N

1, N

1, N

0, 1

0, 1

Figure 5:
Entity-Relationship Model

Time can be managed in different ways; current
state of the art approaches for managing tem-
poral data include audit trails and snapshots.
In our case, we choose the snapshot approach
which is simpler to implement and well suited
for our problem. The snapshot approach sim-
ply require cloning the database tables of in-
terest and adding to cloned tables a field of
type timestamp or date. During the execution
of INSERT queries, data is inserted both in the
tables of interest and in the clones, properly set-
ting the date field. Figure 5 shows the concep-
tual model, while Figure 6 described the logical
model of the database.

The database was implemented using SQLite
owing to the following:

it is a standalone, embedded database
solution (no external dependencies) with
small memory footprint;

it does not require additional libraries;

job_pending

id job_id ptile exclusive_execution job_slots_required queue_id

queue

id nome max_runtime

job_running

id job_id ptile start_time job_slots_allocated queue_id

queue_has_host

queue_id host_id

allocated_hosts_by_job_running

job_running_id host_id

host

id name status rlb job_slots_running max_nr_job_slots

queue_has_user

queue_id utente_id

host_candidate

id data

user

id name

Figure 6:
Database Logic Model

provides support for fully referential in-
tegrity;

it is much faster than MySQL or Post-
gresql with regard to our needs (this is
especially important, given that our soft-
ware performs hundreds of queries every
10 minutes).

TEST AND EXPERIMENTAL RESULTS

We have tested the software thoroughly, leav-
ing the daemon running uninterrupted for two
weeks. A careful inspection of the log allows
inferring the correct operation of the software.
We now analyze the results obtained. The first
snapshot in the cluster log shows the situation
on December 4, 2010. After checking the state
the daemon determines the nodes which are
candidate to shutdown. There were no nodes
candidate to shutdown (no nodes idles for at
least 30 minutes). This situation occurs twice,
for example, January 5, 2011 with the node
n8-csm which has been analyzed (no jobs are
running on the node, so that it is a candidate for



08

C
en

tro
E

ur
o-

M
ed

ite
rr

an
eo

pe
r

iC
am

bi
am

en
ti

C
lim

at
ic

i

CMCC Research Papers

shutdown). For this reason this node has been
marked as a candidate for shutdown, as seen
from the next snapshot, half an hour later. Let
us analyze again the snapshot of December 4,
2010, this time half an hour later delay. We note
that the daemon reported the following situa-
tion: All nodes of the cluster are turned on. That
moment there were pending jobs on the cluster
(case pending > 0), so that the software started
computing how many and what nodes must be
turned on. Unfortunately, all nodes in the clus-
ter (30) were already switched on. As a conse-
quence, pending job persisted in the pending
state until resources were available. The last
log we analyzed is related to January 12, 2011.
There were pending jobs. The software ver-
ified the presence of nodes switched off and
started analyzing the jobs pending and the re-
sources available for each node in the cluster.
The job whose ID is 128467 required 64 cores
with the ptile option that specifies 64 cores per
node. In other words, since each cluster node is
equipped with 64 cores (32 physical cores, 64
virtual cores taking into account that Simulta-
neous Multi Threading is enabled allowing two
threads per core) the user requested all of the
cores of exactly one node. The daemon ana-
lyzed the available resources of all the nodes
until it determined that node n4-csm had 64
cores available, and marked it as a node to be
turned on. Indeed, at the end of the log, the
daemon reports turning on node n4-csm. It
is worth recalling here that the software would
have turned on node n4-csm even if this node
alone were not enough to grant the required
resources to job 128467, according to the algo-
rithm’s design.

CONCLUSIONS

Energy saving is one of the most important is-
sues concerning the entire ICT sector. This
work is focused on these issues and it ad-
dresses the problem by proposing a solution

for our specific use case, laying the foundations
for future improvements. We plan to develop
new advanced algorithms that can provide bet-
ter choices according to the state of the system.

c© Centro Euro-Mediterraneo per i Cambiamenti Climatici 2012

Visit www.cmcc.it for information on our activities and publications.

The Euro-Mediteranean Centre
for Climate Change is a Ltd
Company with its registered
office and administration in
Lecce and local units in
Bologna, Venice, Capua,
Sassari and Milan. The society
doesn’t pursue profitable ends
and aims to realize and
manage the Centre, its
promotion, and research
coordination and different
scientific and applied activities
in the field of climate change
study.


