
Research Papers
Issue 2011
December 2011

Scientific Computing and
Operation (SCO)

Green Computing: Design of a
power saving solution based on
Mixed Integer Programming (MIP)

By Osvaldo Marra
CMCC

University of Salento, Italy
osvaldo.marra@unisalento.it

Maria Mirto
CMCC

maria.mirto@cmcc.it

Massimo Cafaro
CMCC

University of Salento, Italy
massimo.cafaro@unisalento.it

and Giovanni Aloisio
CMCC

University of Salento, Italy
giovanni.aloisio@unisalento.it

SUMMARY This report describes the design, implementation and test of a
software able to monitor the load of a cluster IBM Power 6, acting on its
nodes switching them on and off on the basis of their load (jobs), scheduled
by LSF, taking into account a linear, integer variables optimization model
which produces a feasible schedule, possibly optimal, of pending jobs,
given running jobs. Optimizations happens in two phases: optimization of
the energy cost function, associated to each cluster node; optimization of
makespan in order to avoid holes in the schedule produced by the 1st
optimization. Machines which are idle in the schedule can be powered off.
The aim is to save energy, when possible, consumed by IBM Power 6
cluster. Moreover, turning off idle nodes will also imply less heat produced
by the cluster, and additional savings on the cooling system.

02

C
en

tro
E

ur
o-

M
ed

ite
rr

an
eo

pe
r

iC
am

bi
am

en
ti

C
lim

at
ic

i

CMCC Research Papers

INTRODUCTION

Regarding Green IT, the activities of the CMCC
are aimed at reducing energy consumption due
to the use of computational resources for high
performance in production in the center. The
reduction of such costs can be obtained in an
optimized manner switching off the resources
not used, while maintaining a certain quality of
service, with the consequent lowering of the
heat produced and thus a saving on the energy
consumed by the cooling system.

The problem of minimizing the energy cost
in the presence of constraints on resources
(cluster nodes), is known in Operations Man-
agement as Resource Constrained Project
Scheduling Problem (RCPSP). Therefore, the
main goal of this work has been the design of
a mathematical MIP (Mixed Integer Program-
ming) model with the dual aims of reducing
the energy consumption cost and simultane-
ously optimizing the makespan of the schedule
of jobs on various nodes of the cluster.

The optimization approach tries to dynamically
manage the power consumption ensuring the
demand, in terms of resources, of the sched-
uled jobs on the cluster is met. Jobs are sched-
uled optimally, and nodes identified as idle can
be turned off. The optimization model has been
implemented using IBM ILOG CPLEX solver,
v. 12.2, already installed on the Calypso clus-
ter. The model was tested, considering dif-
ferent workloads in the cluster, scheduled by
the LSF scheduler. The model implemented
is a component of a larger system that is able
to iteratively collect information on the load of
the cluster (acquired from LSF), formulate and
solve a new instance of the optimization prob-
lem, obtaining an optimal configuration of new
nodes (power on, off or idle nodes), apply the
changes in scheduling already planned to LSF
(or other resource manager), to achieve a new
optimal configuration for the next state of the

system.

SCHEDULING ISSUES

Formally, a scheduling problem can be charac-
terized by the following three sets:

T = {T1, T2, . . . , Tn}, set of n tasks (op-
erations);

P = {P1, P2, . . . , Pm}, set pf m proces-
sors (machines);

R = {R1, R2, . . . , Rs}, set of stypes of ad-
ditional resources.

In this context the word "scheduling" means as-
signing machines and (if necessary) additional
resources to the tasks in order to execute while
respecting the constraints that in the classical
theory of the scheduling are typically the follow-
ing:

Each task is run by a machine at a certain
time;

Each machine can perform at most one
task at a time.

In general it is assumed that the tasks can
be partitioned into subsets (chains in general)
each of which is called a job. Therefore, a job
j = {T1j, T2j , . . . , Tnjj} and adjacent tasks are
performed on different resources. With respect
to methods of task execution, machines are di-
vided into two types:

Parallel: If these perform the same func-
tion. Moreover, parallel machines are fur-
ther distinguished , on the basis of their
speed of execution as:

Green Computing: Design of a power saving solution based on M ixed Integer Programming (MIP)

03

C
en

tro
E

ur
o-

M
ed

ite
rr

an
eo

pe
r

iC
am

bi
am

en
ti

C
lim

at
ic

i

{ Identical: the machines all have the
same processing speed v. The pro-
cessing time of a task Tj depends
only on the task and not on the ma-
chine Pi that runs it: pij = pj = lj/v

(lj is the length of Tj);

{ Uniform: the machines have differ-
ent speeds vi but invariant with re-
spect to the task. The processing
time of a task Tj is inversely propor-
tional to the speed vi of the machine
Pi executing it: pij = lj/vi;

{ Non-related: the velocities vij of the
individual machines are different de-
pending on the tasks.

Dedicated: if these are specialized to per-
form particular tasks. In general, in the
general job shop model, the number nj of
tasks of each job is arbitrary and there is
a fixed order for their processing. In this
context there are three sub-models:

{ Open-Shop: the number of tasks per
job is the same ie nj = K ∀j, and are
not given precedence relationships
between tasks of a job;

{ Flow-Shop: in addition to nj = K ∀j,
processing Ti−1j should precede Tij

∀i ∀j;

{ Job-Shop: the number nj of tasks
of each job is arbitrary and there is
a total ordering on the tasks of each
job.

In the scheduling process is important to dis-
tinguish between the parameters that define
the problem known a priori (in the deterministic
case) and variables that describe the solution
produced by the scheduling:

Parameters: each job j is associated
to the following data: rj = ready time

(or release date): indicates the arrival
time in the shop or the minimum start-
ing time related to the processing of
the first operation of the job itself; dj

= due date: indicates the time limit
within which job processing is expect to
end. Normally, depending on the "due
date" are defined some penalty func-

tions; pj =
nj
∑

i=1

pij Processing time: in-

dicates the time to execute all operations
of the job, given the vector of process-
ing times [p1j , p2j , . . . , pnj]

T associated
to all machines P = {P1, P2, . . . , Pnj

};
aj = (dj − rj) allowance: indicates the
total time available to the job in the shop.

Variables: solving a scheduling problem
involves determining the time at which
each job must be processed and more
precisely when each operation must be
performed. This means for every opera-
tion determining the value of the following
variable: Wij = waiting time of the i-th
step Tij of job j, ie the waiting time in the
shop after the (i− 1)-th step before the
start of the i-th step.

The total hold time of the job is: Wj =
nj
∑

i=1

Wij

The scheduling of a particular problem is there-
fore completely specified by knowing the set
{Wij}. Any other variable introduced to eval-
uate the goodness of a schedule is a function
of Wij . One example is the "completion time"
Cj of the job j, which indicates the instant at
which the last operation Tnjj of the job j is com-
pleted: Cj = rj+W1j+p1j+. . .+Wnjj+pnjj =

rj + pj +Wj .

A criterion for scheduling is given by some func-
tions that should be minimized:

Makespan Cmax = maxj{Cj}. It Measures
the completion time of the last job. Minimiz-
ing the makespan implies that many machines

04

C
en

tro
E

ur
o-

M
ed

ite
rr

an
eo

pe
r

iC
am

bi
am

en
ti

C
lim

at
ic

i

CMCC Research Papers

are used and balances their use.

SCHEDULING ON PARALLEL
RESOURCES

The processing of jobs on parallel machines
is important both theoretically and practically.
From a theoretical point of view this case is
a generalization of the scheduling on a single
machine, while from the practical point of view
it is important because the existence of parallel
resources in common occurs in reality. The
main objectives are:

Makespan;

Total completion time;

Maximum lateness.

The makespan in the case of a single machine
is relevant only if the setup time depends on the
sequence while in the case of parallel machines
minimizing the makespan in any case ensures
load balancing between the machines. More-
over, preemption which in the case of single
machine is significant only in the presence of
"ready time", becomes important in this case,
even with concurrent jobs. Finally, even if in
most cases these models give rise to excel-
lent schedules that are non-delay, in the case
of minimization of the "total completion time"
without preemption and with parallel machines
which are not related the optimal scheduling is
not necessarily non-delay. The scheduling of
parallel machines is a two step process:

Allocation of jobs to machines;

Sequencing of jobs on each machine.

If the objective is the makespan only the first
step is significant. This model has a consider-
able practical interest because the minimization
of the makespan also provides load balancing

between the various machines. This problem
is NP-hard even in the simplest case P2||Cmax,
which can be reduced to the well-known PAR-
TITION problem, a classic NP-complete prob-
lem. That said, it follows that many heuristic
algorithms have been developed for the gen-
eral model. The Longest Processing Time first
(LPT) rule, gives the time t = 0 the m longer
job to the m machines. Later, when a machine
is free it will be assigned a job not scheduled
with the largest processing time.

This heuristic tries to assign shortest jobs at
the end of the scheduling where they can be
used to balance the loads between the ma-
chines. For this heuristic a guaranteed approx-
imation exists; the following relationship can,
indeed, be proved: Cmax(LPT)

Cmax(OPT) ≤ 4
3 −

1
3m where

Cmax(LPT) indicates the makespan of the LPT
scheduling while Cmax(OPT) the one related to
the optimal scheduling. There are other heuris-
tics for the problem P2||Cmax that are more so-
phisticated than the LPT rule and consequently
provide better bounds.

DESIGN OF AN OPTIMIZATION MODEL

The problem is formulated taking into account a
careful analysis of the information and data pro-
vided by the computer center. The authorized
users submit jobs to perform scientific calcu-
lations, simulations, etc. Each job requires a
certain number of cores for its execution, and
is managed by LSF according to its submis-
sion request. At the time of submission a user
specifies:

Number of cores;

Queue (optional);

mode of submission (optional).

If the mode is not specified, then the cores are
allocated, on one or more nodes, preferring less

Green Computing: Design of a power saving solution based on M ixed Integer Programming (MIP)

05

C
en

tro
E

ur
o-

M
ed

ite
rr

an
eo

pe
r

iC
am

bi
am

en
ti

C
lim

at
ic

i

loaded nodes. If the request is for exclusive use
of nodes, then one or more nodes are allocated
exclusively to that job (if the job does not use all
the cores of the node, so that #corerequired <

#corenode these cores are idle). If the number
of cores per node has been specified, then it
allocates the required number of cores on a
number of nodes equal to

⌈

#corerequired

#corenode

⌉

Within the cluster, there are some nodes which
must always remain turned on since they pro-
vide services critical to the operation of the clus-
ter. These nodes are:

GPFS Server nodes (I / O nodes) ;

LOGIN nodes.

Every job must have a unique startup time. For
each job we know the submission time (sub-
mit time) and its startup time (start time). For
running jobs we can get an estimate for the
maximum remaining time (processing) of each
job. The following values characterize a queue:
priority and maximum runtime. Jobs are classi-
fied as running or pending. If there are no jobs
pending the model returns which nodes are idle
and can therefore be turned off; if there are
jobs pending the model determines the num-
ber of nodes that can be turned on (if there
are one or more nodes turned off), or whether
the ready time of some nodes is lower than the
time at which these nodes have been turned
on, so that it is worth waiting for these nodes.
As an example, if a job has been running on the
queue poe long for 23h and 40 ’ it can run for at
most 20’; since we know that the time required
to switch on a node is about 30’, then the sys-
tem should not switch on new node to manage
pending jobs.

NOTATION

We now introduce the formal notation used to
describe the mathematical model. For each

entity of interest in the world of the problem,
we use a mathematical variable to represent it
properly. In order to obtain a modeling as gen-
eral as possible, we consider a variable number
of clusters, and therefore define the variable M ,
which represents the number of clusters that
the model takes into account. A cluster consists
of a set of nodes. For each cluster, then we can
define a value Ni, which represents the number
of nodes on the cluster i (i = 1, . . . ,M). Each
node contains a set of cores. Normally the
number of cores installed in a node of a cluster
is homogeneous for all of the nodes in the clus-
ter. However, in this work, we prefer to adopt
a more general approach and let Kin be the
number of cores installed on node n of cluster
i (i = 1, . . . ,M ;n = 1, . . . , Ni). This general-
ization apparently seems to be too strict, but in
our case it is instead strictly required. Indeed,
despite the Calypso cluster nodes are homo-
geneous with regard to the number of cores, in
practice for a few nodes all of the the available
cores can not be used. This is because for ser-
vice nodes, which perform essential tasks for
cluster management etc, some cores are dedi-
cated to run those tasks and therefore can not
be used for scheduling users’ jobs.

A set of hosts in the cluster is logically con-
nected to form a submission queue. Let Q

be the number of queues in the system; jobs
scheduled on a queue will run only on the nodes
associated with that queue. For each queue
we define a parameter, denoted as STM r

MAX ,
which is related to the quality of service and
that we call System Queue Time Average of the
queue r (r = 1, . . . , Q). The logical association
between cluster nodes and queues is handled
by the mathematical model using a binary data
vector ρinr, , in which an entry is 1 if and only
if the node n-th is compatible with the queue r,
and is 0 otherwise. We denote the number of
pending jobs with J , and the values from 1 to J

06

C
en

tro
E

ur
o-

M
ed

ite
rr

an
eo

pe
r

iC
am

bi
am

en
ti

C
lim

at
ic

i

CMCC Research Papers

will be associated with the corresponding jobs.

Finally, we adopt the "rolling horizon" approach,
and therefore we define a point in time that de-
termines the planning horizon denoted as TRH .
That said, for each job j (j = 1, . . . , J) we must
define a variable corresponding to the number
of cores required for execution. Then we de-
fine nij , the number of cores required by the
j-th job (j = 1, . . . , J), if assigned to the cluster
i (i = 1, ldots,M). Moreover, we need to asso-
ciate each job j to its submission queue. This
is controlled by the vector ajr in which an entry
is 1 if and only if the j-th job (j = 1, ldots, J)
has been scheduled on the queue r.

Depending on the submission request, a job
can be assigned to a specific number of nodes,
which we denote by Aj and corresponds to the
maximum number of nodes to which a job can
be assigned. If this variable is null, then the al-
location of the cores is left to the model solver,
which obviously will opt to obtain the most ad-
vantageous solution in terms of energy saving,
trying to saturate the nodes that are already
active and with one or more available cores.

Each job has a different duration, which in the-
ory is known only to the user when she submits
the job choosing the most appropriate queue.
This is because each queue is characterized
by a temporal parameter, which determines the
maximum number of seconds for which a job
can be running on it. Therefore, for each job j

(j = 1, . . . , J) we define an estimated due date
which is exactly the maximum run time of the
queue on which the job has been scheduled,
and denote it by Tj . We define also the sub-
mission time of job j-th (j = 1, . . . , J) to be µj ,
while δij denotes a vector whose entries are 1

if and only if the j-th job (j = 1, . . . , J) can be
executed on cluster i, 0 otherwise.

In order to obtain a realistic scheduling the
mathematical model takes into account the jobs

that are already running on the cluster. Running
jobs represent a constraint with dual nature:

the nodes hosting a running job can not
be turned off at least until the job ter-
minates its execution (assuming that no
other job is using those cores);

the cores used by a running job are them-
selves a constraint related to the schedul-
ing of pending jobs.

It is therefore necessary to define a variable
which takes into account when a certain set of
cores of a given node can be reused, or when
a node can become a candidate for shutdown,
i.e., when all of the cores of a node are not
allocated. Then, we define "Ready time of the
core" and we denote it as rink the ready time of
the k-th core (k = 1, . . . ,Kin) of the n-th node
(n = 1, . . . , Ni) belonging to cluster i th (i =

1, . . . ,M). Finally, we define the energy cost
associated to each node in a cluster, denoted
as cin which is the energy cost of a single node
n (n = 1, . . . , Ni) of cluster i (i = 1, . . . ,M).

DECISIONAL VARIABLES

Suppose that the job processing and ready time
are all multiples of a certain temporal "quantum"
(for example ∆t = 4h). Under this assumption
we can assume that time is discrete and adopt a
"rolling horizon" approach in which the discrete
time variable t is such that t ∈ {0, 1, . . . , tRH}.

yint is a binary variable whose value is 1 (0
otherwise) if and only if the n-th node (n =

1, . . . , Ni) of cluster i-th (i = 1, . . . ,M) is
turned on in the t-th time slot t > rink);

zinkj is a binary variable whose value is
1 (0 otherwise) if and only if the j-th job
(j ∈ J) uses the k-th core (k = 1, . . . ,Kin)
of n-th node (n = 1, . . . , Ni) of i-th cluster
(i = 1, . . . ,M);

Green Computing: Design of a power saving solution based on M ixed Integer Programming (MIP)

07

C
en

tro
E

ur
o-

M
ed

ite
rr

an
eo

pe
r

iC
am

bi
am

en
ti

C
lim

at
ic

i

xinj is a binary variable whose value is
1 (0 otherwise) if and only if the j-th job
(j ∈ J) is assigned to the n-th node (n =

1, . . . , Ni) of i-th cluster (i = 1, . . . ,M);

pjj′ink is a binary variable whose value is
1 (0 otherwise) if and only if the j-th job
(j ∈ J) precedes job j′ on the the k-th
core of node n-th (n = 1, . . . , Ni) of i-th
cluster (i = 1, . . . ,M);

sjt is a binary variable whose value is 1 (0
otherwise) if and only if the j-th job (j ∈ J)
begins at time t;

wij is a binary variable whose value is
1 (0 otherwise) if and only if the j-th job
(j ∈ J) is assigned to the i-th cluster (i =
1, . . . ,M).

OBJECTIVE FUNCTION AND
CONSTRAINTS

Referring to the energy optimization model, we
examine in this subsection, the objective func-
tion and constraints associated to the problem.
The objective function can be expressed as
minimization of the cost function energy. Math-
ematically we have:

Minf = min

M
∑

i=1

Ni
∑

n=1

TRH
∑

rink

cinyint (1)

This function has the aim to minimize the en-
ergy expenditure of a set of clusters. In our case
study we will restrict ourselves only to Calypso,
and then this function will minimize the energy
expenditure of Calypso, providing a scheduling
reaching this goal. Of course, as already dis-
cussed, there are a number of constraints that
must be applied to obtain the schedule. Later,
we will also analyze the objective function re-
quired to minimize the makespan. Ultimately
we will have two cascading models; the second

one takes as input the result obtained from the
first model, i.e., the minimum energy cost and
provide as output the final schedule. The first
constraint we examine is related to the unique-
ness of the processing start time. This must
happen for each pending job. Therefore, it must
be:

TRH−Tj
∑

t=0

sjt = 1 (2)

Moreover, It is also required that for each job
to be scheduled its start time is higher (at most
equal) of the ready time of all the cores that it
should use. This is obvious, since if we con-
sider cores with a ready time greater than the
start time of a job, we would not be taking into
account that some resources are already com-
mitted to that node in the run of a previously
scheduled job. That said, we add the following
temporal constraint on decision variables with
regard to decision variables for the use of cores:

TRH
∑

t=0

tsjt ≥ rinkzinkj (3)

∀j ∈ J ; ∀i = 1, . . .M ; ∀n = 1, . . . Ni; ∀k = 1, . . . ,Kin

In order to submit a job, we said that the user
must specify a queue in which the job will be
run (a default queue is used otherwise). This
corresponds to a constraint on nodes that the
job will be able to use. The association between
queues and nodes is handled by the vector ρinr
while the association between a queue and the
job is handled by the vector ajr . It is then clear
that there must be a constraint on decision vari-
ables xinj that determines on which nodes a job
can be scheduled:

ajrxinj ≤ ρinr (4)

∀j ∈ J ; ∀r = 1, . . .Q; ∀i = 1, . . .M ; ∀n = 1, . . . , Ni

08

C
en

tro
E

ur
o-

M
ed

ite
rr

an
eo

pe
r

iC
am

bi
am

en
ti

C
lim

at
ic

i

CMCC Research Papers

A job must be assigned to only one cluster;
this constraint is expressed by acting on the
decision variableswij , by requiring that only a
value of wij is set to 1. In our case study, since
our attention is focused only on Calypso, these
variables are all equal to 1. The constraint is
the following one:

M
∑

i=1

δijwij = 1 (5)

∀j ∈ J ; ∀i = 1, . . .M

It is also required that each job running on the
k-th core (k = 1, . . . ,Kin) of the n-th node (n =

1, . . . , Ni) of cluster i-th (i = 1, . . . ,M), must
also be running on the n-th node (n = 1, . . . , Ni)
of the i-th cluster (i = 1, . . . ,M). From this
assumption we derive the next two constraints:

zinkj ≤ xinj (6)

∀j ∈ J ; ∀i = 1, . . .M ; ∀n = 1, . . .Ni; ∀k = 1, . . . ,Kin

xinj ≤

Kin
∑

k=1

zinkj (7)

∀j ∈ J ; ∀i = 1, . . .M ; ∀n = 1, . . .Ni

Given a cluster, we must model the nodes be-
longing to it as not being associated to other
clusters. This can be expressed binding the
variables x and w by the following relationship:

M
∑

i=1

xinj ≤ wij (8)

∀j ∈ J ; ∀i = 1, . . .M ; ∀n = 1, . . .Ni

For each job j it is necessary to allocate a spe-
cific number of cores on a single cluster. This
is expressed binding the variable z, which rep-
resent the cores used by job j, to the variables
w. The key role is played by vector n, which

shows the number of cores required by job j:

Ni
∑

n=1

Kin
∑

k=1

zinkj = nijwij (9)

∀j ∈ J ; ∀i = 1, . . .M

In the process of scheduling with resource con-
straints we must introduce time constraints. In
our case, it must hold that the execution of dif-
ferent jobs on the same core may not cause
overlap. Therefore, f the job j and j′ must
use the k-th core (k = 1, . . . ,Kin) of n-th node
(n = 1, . . . , Ni) of i-th cluster (i = 1, . . . ,M),
then the execution of job j will precede job j′ or
vice-versa. Mathematically, this constraint im-
pacts on the start processing decision variables
s and on the decision variables that govern the
precedence relations between jobs. The above
results in a series of three constraints:

TRH−Tj′
∑

t′=0

t′ · sj′t′ ≥

TRH−Tj
∑

t=0

t · sjt + Tij

pjj′ink − tRH (1− pjj′ink)

(10)

∀j ∈ J ; ∀j′ ∈ J−j; ∀i = 1, . . .M ; ∀n = 1, . . . Ni;

∀k = 1, . . . ,Kin; ∀t = 0, . . . , TRH ; ∀t′ = 0, . . . , TRH ;

pjj′ink + pj′jink ≥ zinkj + zinkj′ − 1 (11)

∀j ∈ J ; ∀j′ ∈ J − j; ∀i = 1, . . .M ;

∀n = 1, . . .Ni; ∀k = 1, . . . ,Kin

pjj′ink + pj′jink ≤ 1 (12)

∀j ∈ J ; ∀j′ ∈ J − j; ∀i = 1, . . .M ;

∀n = 1, . . .Ni; ∀k = 1, . . . ,Kin

One of the goals of our model also is also a

Green Computing: Design of a power saving solution based on M ixed Integer Programming (MIP)

09

C
en

tro
E

ur
o-

M
ed

ite
rr

an
eo

pe
r

iC
am

bi
am

en
ti

C
lim

at
ic

i

guarantee related to a certain quality of ser-
vice, on the basis on the time µj spent by a job
j in the system. We define the average system
time in the following as the first member of the
inequality. The second member is the value of
the vector STM r

MAX of queue r. Mathemati-
cally this is expressed as:

STMr ,

∑

j∈J

ajr

[(

tsjt +
M
∑

i=1

Tjδijwij

)

− µj

]

Q

≤ STM r
MAX (13)

∀r = 1, . . . , Q; ∀t = 0, . . . , TRH

where the quantity

tsjt +

M
∑

i=1

Ni
∑

n=1

Tjδijwij

represents the estimated time of execution. We
come now to the most important constraint. Fix-
ing a node in the cluster, it must be turned on
at a certain point in time if there is at least ajob
that uses its cores. This constraint binds the
variable y, which tells whether a node is turned
on in a certain time slot, the variable s and start
processing x to identify on which node a certain
job is running.

yint ≥

t
∑

t′=max(0,t−Tij+1)

sjt′

 + xinj − 1

(14)

∀j ∈ J ; ∀t = 0, . . . TRH ; ∀i = 1, . . .M ; ∀n = 1, . . .Ni;

A job at the time of submission may require
a number of well-defined nodes. This value
is stored in the vector Aj . IfAj > 0, then a job
requires the allocation of its cores on Aj nodes:

Kin
∑

k=1

zinkj =

⌈

nij

Aj

⌉

xinj (15)

∀j ∈ J ; ∀i = 1, . . .M ; ∀n = 1, . . .Ni;

M
∑

i=1

Ni
∑

n=1

xinj = Aj (16)

∀j ∈ J ;

When describing the Calypso cluster we said
that some of its nodes are of key importance
for the cluster, owing to the fact that service
nodes must always be turned on in each time
slot; then, for each service node:

TRH
∑

t=0

yint = TRH + 1 (17)

∀i = 1, . . .M ; ∀n ∈ {service nodes}

We now turn our attention to makespan mini-
mization. Solving the energy optimization prob-
lem provides us with a job scheduling such that
the use of computing resources (nodes) of the
cluster is optimum. However, this solution does
not address the makespan of the schedule, i.e.,
the time it takes to schedule all of the jobs until
the last job terminates its execution. A solution
of the first problem could be:

Turn on the node n in the time slot 0;

Shut down the node n in the time slot 1;

Turn on the node n in the time slot 2.

Through a second optimization model, we try
to remove the middle period, as the first model
suggests to turn off the node, and instead we
try to move the processing done during the sec-
ond period in the first one. This is precisely the
aim of minimizing the makespan. In this way
we obtain a hierarchical family of optimization
problems that solve a multi-objective problem.
The formulation starts with the definition of a
job duration, which is given by the following re-
lationship:

10

C
en

tro
E

ur
o-

M
ed

ite
rr

an
eo

pe
r

iC
am

bi
am

en
ti

C
lim

at
ic

i

CMCC Research Papers

tsjt +

M
∑

i=1

Tjδijwij (18)

∀j ∈ J ; ∀t = 0, . . . TRH ;

This problem will have the same decision vari-
ables and the same parameters of the energy
optimization problem; we add the following new
parameters:

cmin, which represents the minimum en-
ergy cost, obtained by the first model.

ms ≥ 0, which represents the makespan
to be minimized.

Finally, we add a new constraint:

when optimizing the makespan, the en-
ergy cost due to the cluster nodes turned
on must be equal to the minimum energy
cost obtained by solving the energy opti-
mization problem:

M
∑

i=1

Ni
∑

n=1

TRH
∑

rink

cinyint = cmin (19)

the makespan must be greater than or
equal to the completion of a job:

tsjt +
M
∑

i=1

Tjδijwij ≤ ms (20)

The makespan objective function therefore is

Minf = min (ms) (21)

IMPLEMENTATION

The system was implemented using the C pro-
gramming language and the following software
and libraries (Figure 1):

Figure 1:
System Implementation

MPL (A Mathematical Programming Lan-
guage) is a software that can trans-
late models written in the Mathematical
Programming Language AMPL in a for-
mat understandable to a general solver.
AMPL is a high-level language for de-
scribing models of Mathematical Pro-
gramming;

GLPK (GNU Linear Programming Kit) is
a software library written in ANSI C; it
can be used to solve linear program-
ming problems, both continuous (LP) and
mixed integer (MILP). The library imple-
ments the simplex method and a method
based on interior points for solving linear
problems.

CPLEX (solver): ILOG CPLEX optimizer
is the world’s most advanced and used
solver for Mathematical Programming; it
represents the de facto standard in the
field of Operations Research. It improves
the efficiency of decision making, allows
rapid implementation of various strate-
gies, and increases their profitability.

LSF API can be used to retrieve the infor-
mation managed by the LSF scheduler.

VALIDATION AND TEST

The models must be validated. For their val-
idation some instances have been built and
tested to verify the correctness of the proposed
scheduling provided as output.

Green Computing: Design of a power saving solution based on M ixed Integer Programming (MIP)

11

C
en

tro
E

ur
o-

M
ed

ite
rr

an
eo

pe
r

iC
am

bi
am

en
ti

C
lim

at
ic

i

TEST ONE

The first test involved a problem with a cluster
containing two nodes and five cores per node.
Two jobs were submitted, with a request for
three cores for the first job and two cores for
the second one. The planning horizon for this
first check was t = 5 time slots. We expect a
single node turned on to run both jobs, since
these require a total of 5 cores. The steps fol-
lowed for this test are the following ones:

Creation of data files coded in AMPL lan-
guage;

Generation of the problem file in LP for-
mat, to be used as input for the CPLEX
solver;

Creation of the corresponding instance in
CPLEX;

Collection of results.

The solution obtained through the solver is as
follows:

Variable Name Solution Value

y (1,2,0) 1

y (1,2,1) 1

s (1.0) 1

s (2.0) 1

x (1,2,1) 1

x (1,2,2) 1

w (1.1) 1

w (1,2) 1

z (1,2,1,1) 1

z (1,2,2,1) 1

z (1,2,3,1) 1

z (1,2,4,2) 1

z (1,2,5,2) 1

This solution is interpreted as follows. Given a
discrete time window, which we call time-slot in

the real case we consider, a slot lasts for 4h),
the variables y(i, n, t) are vectors of dimension
3 where each dimension indicates:

i = cluster;

n = node;

t = time slot.

As stated in the formulation of the model, these
binary variables assume the value 1 if and only
if the n-th node of cluster i-th is turned on dur-
ing the t-th time slot. In the solution only one
node is identified as active, that is, the node
corresponding to n = 2, which takes care of
the execution of both Jobs.

The variable s, which is a vector in which the
first and second index respectively account for
job and time slot, indicates in which time slot the
job starts. From the solution we can see that
both jobs are scheduled in slot 0 (i.e., they start
immediately). This result was expected, given
that these jobs had no special requirements in
terms of nodes or cores per node.

The node n = 2 remains active for two time
slots, since in the data file the parameter cor-
responding to the job duration (time parameter
job estimated time) is equal to 2 for both jobs.
The energy cost a is associated to each node;
therefore, since a single node is in operation for
2 time slots, the result of the objective function
is 4. The time required to produce the solu-
tion of the energy optimization model was 0.04

seconds. The value of the objective function
obtained is then inserted in the data file of the
makespan optimization model. The solution of
this second model is the following:

Variable Name Solution Value

ms 2

s (1.0) 1

s (2.0) 1

12

C
en

tro
E

ur
o-

M
ed

ite
rr

an
eo

pe
r

iC
am

bi
am

en
ti

C
lim

at
ic

i

CMCC Research Papers

Figure 2:
Gantt Chart - Verify 1

x (1,2,1) 1

x (1,2,2) 1

w (1.1) 1

w (1,2) 1

z (1,2,1,2) 1

z (1,2,2,2) 1

z (1,2,3,1) 1

z (1,2,4,1) 1

z (1,2,5,1) 1

y (1,2,0) 1

y (1,2,1) 1

We note immediately that the solution of this
second model is identical to the first; analogous
considerations apply to this case. The fact that
the two solutions are identical is not surprising
and is an expected result, since the minimiza-
tion of the makespan is precisely to minimize
the overall time spent executing the jobs. The
ms variable in this case is equal to 2, and given
the simplicity of the problem is immediate to re-
alize that the whole project ends in 2 time slots,
since both jobs last 2 time slots, and can be
executed in parallel on 5 cores of node n = 2.

As shown in the Gantt chart (Figure 2), it is
evident that there is only one active node for
two time slots. The model is planning to switch
d off the node for the next 3 slots. The node
n = 1 will always be turned off. Below is the
collection of data characterizing this first test:

param M: = 1;

param N: = 2;

param K: =

1 1 5

1 2 5

;

param Q: = 2;

param STM_MAX: =

1 6

2 6;

param j: = 2;

param a: =

1 1 1

1 2 0

2 1 0

2 2 1

;

param A: =

1 0

2 0;

param n: =

1 1 3

1 2 2;

param tempo_stim_job: =

1 2

2 2

;

param tempo_sott: =

1 1

2 1;

param map_queue_node: =

1 1 1 1

1 1 2 1

1 2 1 1

1 2 1 2

;

Green Computing: Design of a power saving solution based on M ixed Integer Programming (MIP)

13

C
en

tro
E

ur
o-

M
ed

ite
rr

an
eo

pe
r

iC
am

bi
am

en
ti

C
lim

at
ic

i

param delta: =

1 1 1

1 2 1

;

param ready_time: =

1 1 0 1

1 1 2 0

1 1 3 0

1 1 4 0

1 1 5 0

1 2 1 0

1 2 2 0

0 1 2 3

1 2 4 0

1 2 5 0

;

param costo_energetico: =

1 1 2

1 2 2

;

param T: = 5;

TEST TWO

The second test is similar to the first one, but in
this case the job for j = 1 requires 5 cores. The
duration of each job is equal to 2 time slots, and
the configuration parameters of the cluster are
the same. The planning horizon is set at t = 5

time slots. This time we do not expect the jobs
to be placed both on a single node, given the
request associated to the first job. The solution
to the the energy optimization is the following:

Variable Name Solution Value

y (1,1,0) a

y (1,1,1) a

y (1,1,3) a

y (1,1,4) a

s (1.0) 1

s (2.3) 1

x (1,1,1) a

x (1,1,2) 1

w (1.1) a

w (1,2) 1

z (1,1,1,1) 1

z (1,1,1,2) 1

z (1,1,2,1) 1

z (1,1,3,1) 1

z (1,1,4,1) 1

z (1,1,4,2) 1

z (1,1,5,1) 1

p (2,1,1,1,1) 1

p (2,1,1,1,4) 1

This solution involves only one node (the one
for n = 1) turned on for 4 time slots, because
of the request for the first job. Job precedence
constraints must hold, as shown by the values
of the p variable indicating the order of prece-
dence for cores 1 and 4 of node 1 (the vector
p is 5-dimensional and each index is related to:
job, job, cluster, node, core). The value of the
objective function in this case is equal to 4. This
value is passed to the makespan optimization
model, obtaining the following solution:

Variable Name Solution Value

ms 2

s (1.0) 1

s (2.0) 1

x (1,1,1) 1

y (1,1,0) 1

x (1,2,1) 1

x (1,2,2) 1

w (1.1) 1

w (1,2) 1

z (1,1,1,1) 1

z (1,1,2,1) 1

z (1,1,3,1) 1

z (1,2,2,1) 1

14

C
en

tro
E

ur
o-

M
ed

ite
rr

an
eo

pe
r

iC
am

bi
am

en
ti

C
lim

at
ic

i

CMCC Research Papers

z (1,2,3,1) 1

z (1,2,4,2) 1

z (1,2,5,2) 1

y (1,2,0) 1

y (1,1,1) 1

y (1,2,1) 1

In this case the makespan optimization took
into account the minimum cost value calcu-
lated from the first model, but both nodes re
turned on in order to minimize the completion
of the project, which as in the first case study is
ms = 2 (while the makespan after the first opti-
mization is 4 since only one node is active node
and carries over the whole schedule). Both jobs
start in the same time slot, i.e., at the instant
t = 0. With regard to the previous Gantt char,
the situation remains unchanged, except that in
this case the job j = 1 uses both nodes for its
execution. The set of data of this second case
study is not reported being almost equal to the
first one (the only changes are related to the
values of the vector n).

CASE STUDY

The case studies drawn from real job sub-
missions are analyzed using the mathemati-
cal models and software described. We run
the software designed and implemented as a
job directly on the Calypso cluster. Both the
model and data files are dynamically built using
information extracted from the LSF scheduler.
The instances that are generated are therefore
much greater in size with regard to to the pre-
vious validation tests. The first instance of ac-
tual test was the scheduling of 5 pending jobs.
Nodes in the model correspond to these physi-
cal hosts:

MODEL NODE ID REAL NODE ID

CORES AVAILABLE

1 8 64

2 13 60

3 23 60

4 27 64

5 1 60

6 10 64

7 28 64

8 2 60

9 21 60

10 29 64

11 3 64

12 12 60

The jobs considered were 5 job pending, each
requiring 256 cores. The energy optimization
model found a solution after 175.72 seconds
with objective function value 456 However, the
makespan optimization model did not terminate
its execution, owing to the fact that LSF killed
the corresponding job after exceeding the the
time limit associated with the run queue on
which it was running.

Another instance involved the schedule created
by 1 pending job. Nodes in the model corre-
spond to these physical hosts:

MODEL NODE ID REAL NODE ID

CORES AVAILABLE

1 17 64

2 27 64

3 28 64

4 2 60

5 29 64

6 12 60

7 16 64

The energy optimization model found a solution
after 0.11 seconds with objective function value
248 The makespan optimization model termi-
nated after 0.09 seconds. We report here only
a significant part of the solution found:

11 ms

Green Computing: Design of a power saving solution based on M ixed Integer Programming (MIP)

15

C
en

tro
E

ur
o-

M
ed

ite
rr

an
eo

pe
r

iC
am

bi
am

en
ti

C
lim

at
ic

i

s (1.5) 1

x (1,1,1) 1

x (1,3,1) 1

x (1,5,1) 1

x (1,7,1) 1

The planning returned a time horizon equal to
18 time slots. The solution found suggests that
the job must start after 5 time slots (a slot is a
time window of 4 hours). This is consistent with
the status of nodes identified, which are nodes 3
and 5; the ready time of these nodes is equal to
5 time slots. We recall here that the ready time
is the parameter that tells how much we must
wait before a given node can be used. The con-
clusions we can draw about these experiments
are fairly obvious. The model involves compu-
tation times that increase exponentially as the
number of jobs increases. Therefore, in spite
of the formal correctness of both models, we
highlight the need to develop heuristics for the
problem, since determining an optimal solution
through the CPLEX solver is not a feasible al-
ternative. One of the basic requirements is in
fact the need to obtain a solution within a time
window of no more than 30 minutes.

CONCLUSIONS

Scheduling is, in general, NP-Complete. This
implies that, for large instances, the time re-
quired for an optimal solution increases expo-
nentially. Because the instances we want to
analyze are extremely large, a further develop-
ment that can lead to faster solutions obtained
in reasonable times is the aggregation of some
variables. For example, instead of consider-
ing the total number of cores, we can consider
packages of cores as if they were a single entity.
Using this approach, we can follow two distinct
directions:

heuristic solutions: if the packet size is
arbitrary;

optimal solutions: if the packet size is
obtained as the greatest common divisor
(MCDk) of the number of cores required
by the jobs.

A similar simplification can also be done to cor-
rectly size the time slot. Indeed, considering
the duration of all jobs, we can set the length
of the slot as MCDt of all job durations, still
obtaining an optimal solution.

c© Centro Euro-Mediterraneo per i Cambiamenti Climatici 2012

Visit www.cmcc.it for information on our activities and publications.

The Euro-Mediteranean Centre
for Climate Change is a Ltd
Company with its registered
office and administration in
Lecce and local units in
Bologna, Venice, Capua,
Sassari and Milan. The society
doesn’t pursue profitable ends
and aims to realize and
manage the Centre, its
promotion, and research
coordination and different
scientific and applied activities
in the field of climate change
study.

