

CCCEEENNNTTTRRROOO EEEUUURRROOO---MMMEEEDDDIIITTTEEERRRRRRAAANNNEEEOOO

PPPEEERRR III CCCAAAMMMBBBIIIAAAMMMEEENNNTTTIII CCCLLLIIIMMMAAATTTIIICCCIII

 SCO – Scientific Computing and Operations Division

ORCA025:

Performance Analysis on

Scalar Architecture

 Italo Epicoco

University of Salento, Lecce

Silvia Mocavero

Scientific Computing and Operations, CMCC

Enrico Scoccimarro

Istituto Nazionale di Geofisica e Vulcanologia ((INGV) and Numerical

Applications and Scenarios Division, CMCC

Giovanni Aloisio

Scientific Computing and Operations, CMCC

University of Salento, Lecce

T
e

c
h

n
ic

a
l

R
e

p
o

rt
s

 Centro Euro-Mediterraneo

per i Cambiamenti Climatici

www.cmcc.it

November 2008 TR29

 2

ORCA025 Performance Analysis on Scalar Architecture

Summary

This technical report describes the porting and performance evaluation activities performed on

ORCA025 code, implementing the global ocean general circulation model (OGCM) OPA. The

code, currently available and optimized on vector architectures, has been ported on HP

XC6000 Itanium2 scalar cluster, provided by the associate partner SPACI. The activity is

mainly focused to evaluate how a scalar architecture based on Itanium2 processor behaves

with oceanographic model that traditionally run on vector clusters. Performance analysis of the

parallel code showed good results in terms of scalability.

Keywords: ORCA025, performance analysis, HP XC6000, Itanium2, HPC.

JEL Classification: C63

Version: 1.0

Release Date: 25.11.2008

Address for correspondence:

Italo Epicoco

Faculty of Engineering

Via per monteroni

73100 Lecce, Italy.

Ph: +39 0832 297235 E-mail: italo.epicoco@unile.it

 3

Table of Contents

Introduction ... 4

1. Porting of ORCA025 code on Itanium2 .. 5

1.1. Compilation.. 5

1.2. Code changes ... 6

2. ORCA025 code analysis on Itanium2.. 8

2.1. Configuration .. 8

2.1.1. Hardware ...8

2.1.2. Software...10

2.2. Profiling .. 12

2.3. Tracing.. 12

2.4. Performance... 14

Bibliography... 21

 4

Introduction

This technical report describes the porting of ORCA025 code, developed for both vector and scalar

architectures, on the HP XC6000 Itanium2 scalar cluster and the analysis of its performance.

ORCA025 code implements the global ocean general circulation model (OGCM) OPA (Ocean

Parallelise) model [1] with an horizontal resolution of 0,25°. The code is written in Fortran 77 with

some routines in Fortran 90 and others in C. It has been parallelized using the MPI library. The

code, that we considered, is optimized to best suite on vector processors.

The main goal of performance evaluation in terms of scalability, on scalar architectures, is the

possibility to use both scalar and vector clusters to run simulations within CMCC activity. Vector

resources could not be always available: if the code shows good performance on scalar

architectures, these resources (characterized by a high number of CPUs) can be used in addition to

vector clusters, minimizing jobs queuing time.

 5

1. Porting of ORCA025 code on Itanium2

The porting of ORCA025 parallel code (provided by INGV partner) on the scalar architecture

needed of some changes during both the compilation and execution steps. Makefiles have been

modified in order to optimize the use of Intel C and Fortran compilers. Some execution parameters

have been changed to solve problems related to the memory limits on the single Itanium2 compute

node.

1.1. Compilation

In order to compile ORCA025 parallel code, Intel icc and ifort compilers have been used instead of

sxmpicc and sxmpif90 compilers [2], used on vector SX clusters. Some optimization options have

been introduced during the compilation to exploit Intel compilers features [3]. In particular we have

used the following compilers options:

• tpp2 : target optimization to the Itanium 2 processor.

• Ip : enables single-file IP optimizations (within files). With this option, the compiler

performs inline function expansion for calls to functions defined within the current

source file.

• mp1 : improves floating-point precision. This option disables fewer optimizations and has

less impact on performance than –mp. The -mp option restricts optimization to

maintain declared precision and to ensure that floating-point arithmetic conforms

more closely to the ANSI* and IEEE standards.

• r8 : defines REAL declarations, constants, functions, and intrinsic as DOUBLE

PRECISION (REAL*8), and defines COMPLEX declarations, constants, functions,

and intrinsic as DOUBLE COMPLEX (COMPLEX*16).

ORCA025 code includes several features that can be enabled or disabled through several

compilation keys. The Makefile has been modified in order to take into account the needed keys as

reported in the following table:

 6

1.2. Code changes

ORCA025 has been modified to solve some issues related to memory limits on the Itanium2 node.

In particular, a call to the all-to-all MPI_Allreduce operation involves a very large dataset compared

with memory capacity of each node. Thus, the ‘reduce’ operation applied on an array of dim

elements has been split into n sequential calls with array of dim/n elements. This transformation

implies a loose of performance but it is strictly required in order to complete the elaboration on

XC6000 cluster. Follows code changes:

Original code

__

SUBROUTINE mpprsum(ptab,kdim)
……
elif defined key_mpp_mpi
C
C MPI VERSION
C

INTEGER ierror
C

CALL mpi_allreduce(ptab,pwork,kdim,mpi_double_precision
$,mpi_sum,mpi_comm_world,ierror)
ptab=pwork

key_orca_r025 key_flxqsr key_resteuler

key_freesurf_cstvol key_sst key_mpi_isend

key_zdftke key_tradmp key_flx

key_hpgimplicit key_temdta key_flx_ecmwf

key_trahdfiso key_saldta key_tau

key_trahdfcoef2d key_saldta_monthly key_tau_ecmwf

key_dynhdfcoef2d key_diahth key_sst_ecmwf

key_dynhdfbilap key_mpp key_diamean

key_trahdfeiv key_mpp_mpi key_vorene_ens

key_convevd key_r4

 7

C
else
……
RETURN
END
__

Modified code

__

SUBROUTINE mpprsum(ptab,kdim)
……
elif defined key_mpp_mpi
C
C MPI VERSION
C
INTEGER ierror
INTEGER i
INTEGER my_len
REAL ptab_tmp(kdim),pwork_tmp(kdim)
C

DO i=1, kdim, 1021
IF ((kdim - i + 1) .le. 1021) THEN

my_len = kdim - i + 1
ELSE

my_len = 1021
END IF
ptab_tmp = ptab(i:i + my_len - 1)
CALL mpi_allreduce(ptab_tmp,pwork_tmp,my_len,
$ mpi_double_precision,mpi_sum,mpi_comm_world,ierror)
ptab(i:i + my_len - 1)=pwork_tmp(1:my_len)

END DO
C
else
……
RETURN
END
__

 8

2. ORCA025 code analysis on Itanium2

2.1. Configuration

ORCA025 parallel code performances have been evaluated running it on the HP XC6000 cluster,

named sigma.unile.it. The cluster is located in the SPACI Consortium Lecce site. In this section we

describe the hardware and software configuration used during the evaluation of the performance of

the application

2.1.1. Hardware

The HP XC6000 cluster is a scalar machine equipped with 64 nodes with 2 processors Itanium2

(Madison - 1.4 Ghz), a local scratch disk SCSI Ultra-320 with 36 GB 15000 rpm and 4 GB of RAM

for each node, for a total of 128 processors. The nodes are interconnected each other and with the

storage system as depicted in Figure 1. In detail the nodes are classified into:

 n. 4 service node (n61-n64): devoted for the cluster management services like NFS, LSF,

I/O interface, boot, shutdown, etc. They also represent the front-end nodes for the users.

 n. 60 compute node (n1-n60): devoted only for computing.

Two interconnection networks characterize the cluster:

1. a Gigabit Ethernet network

2. a Qsnet-II Elan4 network

The Gigabit Ethernet network is used both to manage the cluster and to share the filesystem among

nodes through NFS. The Qsnet-II network is realized using a Quadrics Elan 4 interconnection

switch at 800 MB/s characterized by a very slow latency and only used for MPI communications.

 9

Nodes named n61 (sigma4) and n62 (sigma3) are I/O nodes; they are NFS servers exporting user’s

home to all of the other nodes. In particular, home and home1 partitions are allocated on a

heterogeneous external storage system, the HP SAN (Storage Area Network) EVA 3000 with

720GB, connected to the n61 and n62 nodes through a fiber channel connection at 2 Gb/s. n64

(sigma1) node is the head node used for management operations (boot, shutdown, etc).

All of the nodes mount both the volumes home and home1 using the NFS server, through the two

I/O nodes n61 and n62. Thus, when one or more applications, characterized by a high number of

I/O operations, are executing, the NFS server could represent a bottleneck. To solve the problem,

there is a local scratch on each node that can be used to store temporary computing data; in this way

it is possible to profitably use the resources and optimize the job execution time.

Figure 1 - HP XC6000 cluster architecture

 10

2.1.2. Software

ORCA025 application can be launched using a shell script. Using this script the user can set

execution parameters (the time range for the whole execution, the time steps for output saving, the

execution directory, the executable path, etc.). The bottleneck introduced by NFS (see 2.1.1) has

been overcome using the local disk of the compute nodes; the shell script has been extended in

order to properly handle same preliminary operation; a local scratch directory

(LOCAL_SCRATCH) has been introduced; input/output files are copied from the

LOCAL_SCRATCH to the GLOBAL_SCRATCH (in the user home) and vice-versa. Follows

modified sections of the shell script, in order to allow read/write access to the local disk:

__

BASEDIR=/home1/epico/ORCA/POG05B
LOCAL_SCRATCH=/tmp/scratch/orca
GLOBAL_SCRATCH=/home1/epico/ORCA/test
OUTDIR=${LOCAL_SCRATCH}
ARCHDIR=${GLOBAL_SCRATCH}/POG05B

b=`expr $RMS_RANK % 2`;
if [$b -eq 0]; then

mkdir -p ${OUTDIR}
workdir=${OUTDIR}
indir=$GLOBAL_SCRATCH/data/ORCA025
bindir=${BASEDIR}/bin
FORCING=${indir}
SPIN=${indir}
cd ${workdir}
rm -f ${workdir}/*
……

elif [$b -eq 1]; then
workdir=${OUTDIR}
indir=$GLOBAL_SCRATCH/data/ORCA025
bindir=${BASEDIR}/bin
FORCING=${indir}
SPIN=${indir}
cd ${workdir}
while ! test -r tmp_`hostname`
do

a=1
done
rm tmp_`hostname`

fi
./opa025_${KEYMPP}cpus
……

 11

b=`expr $RMS_RANK % 2`;
if [$b -eq 0]; then

touch `hostname`
elif [$b -eq 1]; then

while ! test -r `hostname`
do

a=1
done
rm opa025_${KEYMPP}cpus
rm coordinates* ERA40* namelist ECMWF* runoff*
rm maskglo.nc bathymetry Levitus98* EMPave_old.dat
rm `hostname`
if [$RMS_RANK -gt 1]; then

rm solver.stat time.step STmean.diagnostic MHT.diagnostic
rm energy.diagnostic date.file EMPave.dat DCT.diagnostic OK

fi
/bin/mv * ${ARCHDIR}_${nyear}${month}${startday}/.

fi
touch $RMS_RANK
while ! test -r $RMS_RANK
do

a=1
done
/bin/mv $RMS_RANK ${ARCHDIR}_${nyear}${month}${startday}/
cd ${ARCHDIR}_${nyear}${month}${startday}
k=0
while [$k -lt ${KEYMPP}]
do

while ! test -r $k
do

a=1
done
k=$(expr $k + 1)

done
__

Tests have been performed simulating one day (ndays=1), fixing a time step of 720 seconds and

saving measured variables every 120 time steps (nmean=120). With this configuration, the

computed variables are saved into a file at the end of each simulated day; in our case this

corresponds to the end of the entire simulation. OPA model implementation allows saving

execution status into such a restart file. This option is generally used for the simulations

characterized by a long life (over a week) time interval, in our case we disabled it.

 12

2.2. Profiling

Tests have been executed starting from 32 processors and increasing the number of them until 64.

Taking into account the memory available on each node, and considering that the application

allocates a peak of 30GB, we can not use less then 16 nodes. On the other hand due, to the

concurrent usage of the cluster by other users, we limited the test up to 64 processors.

2.3. Tracing

Early tests have shown that the execution times of the application, launched with the same

configuration, were deeply different for different runs. In order to explain this behavior, the

“Intel® Trace Analyzer and Collector 7.0 for Linux” suite has been used. It consists of the

following two modules:

1. The Intel Trace Collector (ITC), a tool (for MPI applications) able to collect into a tracing

file several parameters about the execution of the application. These information can be used

to analyze the application performance;

2. The Intel Trace Analyzer, a graphic tool for the visualization of data collected into the

tracing file by the ITC.

In Figure 2 execution time spent for each process is decomposed in communication time (red

segment) and computing time (blue segment); in particular, a zoom in of the first 200 seconds of the

execution has been taken into account. The chart highlights an unbalanced workload on P30 and

P31 processes. Indeed while all of the processes reach the MPI_Allreduce function call after about

20 seconds, P30 and P31 are still computing and will be ready to participate to the collective

operation only after 200 seconds. This obviously produces a general inefficiency of the application.

Several run tests have been performed and results have shown that processes characterized by an

unbalanced workload are not always the same. The experiments demonstrate that the slowing down

is not due to the code implementation, but is caused by the use of two specific nodes (n33, n34).

Computation on these nodes was generally very slow, independently from the processes running on

them (i.e. in P30 e P31 in Figure 2). When MPI collective functions are performed, the activity on

these nodes slows down the activity of each others. Excluding these two nodes from the pool of

 13

computing nodes, the workload gets balanced among processes. Without the faulty nodes, the

execution time measured for many runs with the same configuration became similar reducing the

variance of the measurements.

Figure 2 – Performance analysis using Intel Trace Collector & Analyzer tools. Computing

time (blue) and communication time (red) during the former 200 seconds of execution.

 14

2.4. Performance

In order to evaluate ORCA025 performance we got the average execution time over 5 runs for

different configurations increasing the number of processes from 32 up to 64, with a step of 4. The

charts in Figure 3 show efficiency, speed-up and execution time. Since sequential time cannot be

evaluated due to the memory limit on a single node, efficiency and speed-up have been computed

considering as referring time that one spent to execute the application on 32 processors. The

following formulas have been used:

Speed upN =
Parallel Execution Time on 32

Parallel Execution Time on N
 where N 32 (number of processes)

EfficiencyN =
Parallel Execution Time on 32

N

32
Parallel Execution Time on N

A speed-up of 2 is expected when processors number is equal to 64. In Table 1 execution time,

efficiency and speed-up are listed.

Table 1 – Execution time, efficiency and speed-up when processors number increases

Processors Execution time (sec) Speed-up Efficiency

32 987,20 1,00 1,00

36 904,80 1,09 0,97

40 832,80 1,19 0,95

44 777,20 1,27 0,92

48 717,80 1,38 0,92

52 673,80 1,47 0,90

56 642,60 1,54 0,88

60 592,40 1,67 0,89

64 561,00 1,76 0,88

 15

Figure 3 - Profiling of ORCA025 code: efficiency, speed-up, execution time when processors

number increases

 16

Table 2 reports the execution time, highlighting the processing time and the start-up time. In Figure

4, related execution time chart is shown. Start up operations include stage-in of the input files from

global (GLOBAL_SCRATCH) to local (LOCAL_SCRATCH) working directory, the clean-up of

temporary files at the end of the job and the copy of output file from local to global working

directory.

Figure 4 – Execution time components chart

Table 2 - Execution time components: start up time and processing time

 Start-up Time Processing Time Execution Time

32 94,20 893 987,20

36 92,80 812 904,80

40 96,80 736 832,80

44 95,20 682 777,20

48 98,80 619 717,80

52 105,80 568 673,80

56 105,60 537 642,60

60 111,40 481 592,40

64 101,00 460 561,00

 17

In order to analyze the scalability and the efficiency of the parallel implementation we must

consider only the ‘processing time’ and not the whole ‘wall clock time’ hence excluding the start-up

time that has been introduced only for optimizing the I/O operations through the use of the local

disk rather then the shared disk; moreover considering that 4GB of main memory are not sufficient

for handling the computation of the model on one node and that 16 nodes are needed for computing

the model without the use of disk swap space, we referred the scalability to the processing time

measured in parallel on 32 processors. The charts in Figure 5 show scalability in terms of

efficiency, speed-up and execution time, taking into account only the processing time, when the

number of processors increases. Table 3 shows details on execution time, considering the average

on 5 runs.

Table 3 - Processing time, efficiency and speed-up when processors number increases

Processors Processing time (sec) Speed-up Efficiency

32 893 1,00 1,00

36 812 1,10 0,98

40 736 1,21 0,97

44 682 1,31 0,95

48 619 1,44 0,96

52 568 1,57 0,97

56 537 1,66 0,95

60 481 1,86 0,99

64 460 1,94 0,97

 18

Figure 5 - Profiling of ORCA025 code: efficiency, speed-up, processing time

 19

A more detailed analysis on the execution time highlights that the processing time is given by 3

main factors: I/O time, represents the time needed for I/O operations occurred during the

simulation; MPI time, that represents the communication overhead introduced by the parallel

implementation; computation time that is the time for the operations devoted only for computation.

Table 4 and Figure 6 report the measured times.

Figure 6 - Processing time components

Table 4 - Processing time components: I/O time, MPI time and computation time

MPI Time

I/O Time

Average Standard deviation

Computation

Time

Processing

Time

32 1,39 283,63 24,97 607,98 893

36 1,38 254,32 18,6 556,3 812

40 1,41 240,89 22,84 493,7 736

44 1,4 196,65 16,3 483,95 682

48 1,5 138,95 15,11 478,55 619

52 1,47 103,9 13,15 462,63 568

 20

56 1,42 122,74 15,77 412,84 537

60 1,48 114,25 13,08 365,27 481

64 1,41 139,78 17,76 318,81 460

The analysis illustrated within the present report induces to the following conclusions:

• ORCA025 code shows optimal results in terms of scalability, referring to execution time on

32 processors. However, it is necessary to evaluate scalability using the sequential time as

starting point, even if this kind of test must be performed on a scalar cluster which satisfies

application memory requirements

• Avoiding physic limits due to the cluster architecture, execution time can be improved.

 21

Bibliography

[1] Gurvan Madec, Pascale Delecluse, Maurice Imbard et Claire Lévy, OPA 8.1 Ocean General

Circulation Model Reference Manual, Institut Pierre Simon Laplace des Sciences de

l'Environnement Global, 1998.

[2] http://www.ksc.re.kr/user/data/nec_manual/nec/g1af09e/index_frame.html

[3] http://www.intel.com/cd/software/products/asmo-na/eng/346152.htm

[4] http://www.lle.rochester.edu/pub/support/lsf/pjs-contents.html

