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Abstract  

This study is a result of the activity carried out at ISC CMCC Division CIRA. The activity 

was dedicated on understanding the different modalities used to manage the discrepancy 

between the coarse scale at which the COSMO LM1 delivers output and the scale that is 

required for most impact studies.  

This study reviews 8 methods of interpolation to be used on digital model output data from 

the COSMO LM. The model output data are predicted precipitation on a regular grid 

shaped surface with 305 point location and a resolution of 2,8 Km. Most of the 

geographical spatial analysis require a continuous data set and this study is designed to 

create that surface. This study identifies the best spatial interpolation method to use for the 

creation of continuous data for predicted precipitation. ArcGIS was employed as the 

software for this study. The following interpolated methods were developed in ArcGis: 

Inverse Distance Weight, Radial Basis Function (RBF), Kriging (Ordinary, Simple, 

Universal and Disjunctive), Local Polynomial interpolation and Global Polynomial 

Interpolation. A statistical measurement of the resultant continuous surfaces indicates that 

there is little difference between the estimating ability of the 8 interpolation methods with 

RBFs performing better overall.  

1 Introduction 

Precipitation is one of the most frequently used meteorological parameter in impact 

studies. The spatial variability of the precipitation depends not only on the nonperiodic or 

periodic behaviour of the general atmosphere but also on the sub-grid scale atmospheric 

processes such as cloud formation, turbulences, convection, evaporation etc. (Lorenz, 

E.N., 1966: ‘’Nonlinearity, Weather Prediction and climate deduction’’ Final Report, 

Statistical forecasting project, 22 pg); 

                                            

1 The Lokal-Modell (LM) is a nonhydrostatic limited-area atmospheric prediction model. It has been 
designed for both operational numerical weather prediction (NWP) and various scientific 
applications on the meso- and meso- scale. The LM is based on the primitive thermo-
hydrodynamical equations describing compressible flow in a moist atmosphere. The model 
equations are formulated in rotated geographical coordinates and a generalized terrain following 
height coordinate. A variety of physical processes are taken into account by parameterization 
schemes. The basic version of LM has been developed at the Deutscher Wetterdienst (DWD). The 
subsequent developments related to LM have been organized within COSMO, the Consortium for 
Small-Scale Modelling. COSMO aims at the improvement, maintenance and operational 
application of a non-hydrostatic limited-area modelling system based on the LM. At present, 
different meteorological services partecipate to COSMO. (For other info see www.cosmo-
model.org) 
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When these physical processes that are governing the atmosphere are integrated into 

digital atmosphere models, thank to parameterisation processing (Zorita and von Storch 

1999), the output of these models needs only to fulfil the areal character that is needed in 

impact studies, which means a higher resolution.  

Therefore, when the impact studies are constructed directly from a digital model output (in 

our case COSMO LM ), they are unsuitable because the spatial resolution is too coarse 

(von Storch et al. 1993, Palutikof & Wigley 1996). So downscaling techniques were 

required to generate input data with a finer spatial/temporal resolution. The final result of 

these downscaling techniques is expected to have the characteristic of areal distribution 

which means not only data with finer spatial resolution but also data that preserve the 

characteristics of the conditions that generated them.  

The large range of methods encountered in the studied bibliography, has imposed 

problems not only for finding the most suitable method but also because of the limited 

range of data that is available to use for these methods. 

Therefore for this first period I have compressed my activity in finding a way in which the 

predicted output of the COSMO LM can be used as base data for the statistical operation 

that compose  the downscaling techniques.   

From the bibliography studied and due to the logistical and data availability, emerged the 

idea of concentrating the activity on the statistical downscaling. 

Statistical Downscaling (SD): is a method of obtaining high-resolution 

climate/meteorological information from relatively coarse-resolution model. 

SD methods establish statistical relations among large-scale variables (predictors) and the 

variables on a finer-grid scale (predictands). 

This paper presents, therefore, an assessment of a regression-based SD method that has 

been widely used for constructing climate/meteorological scenarios for daily precipitation 

at local sites using digital model grid point information. 

If, in most cases, as predictors were considered sea-level pressure (SLP), geopotential 

height (Z), temperature or relative (RH) and specific humidity (SH) etc. and as methods, 

re-sampling (analogue methods) or weather generators, this time we have decided on a 

simpler approach – spatial interpolation.   
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This method is based on the idea that terrain variables and geographical location are used 

as predictors of the meteorological/climate variables. This is a plausible idea if we consider 

that different morphology and geographical location of a region receive in an equal 

different way the general atmospheric circulation and these morphological and 

geographical characteristics of a region impose local characteristics to the general 

atmospheric circulation. So, having in mind that the radiation fluxes stands at the base of 

atmospheric circulation, what we are doing is using the very roots of the factors (surely not 

all of them) that produces variability of the radiation fluxes (and by so the variability of the 

atmospheric circulation at the local scale) – the geography of relief (morphology, location). 

In other words, the different orientation of the slopes or the vicinity of an aquatic basin 

(sea, ocean), for example, determine a different dynamic of the atmosphere due to their 

different degree of isolation (solar radiation), which activates or not elements of the 

boundary layer climate (turbulence and air movement, thermal convectivity etc.). As 

consequence this elements are responsible of creating diversity at a local level within the 

general circulation. 

Though a high number of variables (latitude, longitude, elevation, distance from the 

nearest coast, slope, aspect, etc.) are used in the bibliographical studies to create the 

areal distribution of the precipitation, the position examined in this initial paper would, 

mostly, be that of underling methods, characteristics, limitations and accuracy (at least 

from statistical point of view) of the predicted areal precipitation interpolated from the grid 

shaped output of the Cosmo LM. So, a low number of variables  – latitude an longitude – 

were used in order to keep the attention on the ‘’behaviour’’ of areal distribution of 

precipitation when interpolated from a regular grid Cosmo Lm output with a various 

amount of methods. 

It remains for the future work to examine if the number of variable, alone, are inducing an 

evident positive or negative evolution in the representation of areal precipitation using 

similar data and spatial interpolation characteristics and methods.   

2 Spatial Interpolation  

Interpolation methods allow creating a surface on the base of sample points and predicting 

of values in all point of territory. The justification underlying spatial interpolation is the 

assumption that points closer together in space are more likely to have similar values than 

points more distant. This observation is known as Tobler’s First Law of Geography  
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There are many interpolation methods which produce different results using the same 

data. The methods can be divided in two main groups: Regular and Irregular. 

In case of using the irregular methods the points are connected at triangles. Each 

triangle determines a surface which is used for assessment of values of each point. It is 

necessary to have many known points for irregular methods implementation. Because of 

this, these methods are not suitable for climate/meteo data interpolation. These methods 

are often used for  relief modelling – creating Digital Elevation Models (DEM) . 

The regular methods for interpolation make close initial points and create a net of 

identical rectangles with determined by user sides. In this case two main groups of 

methods can be used: deterministic and geostatistical. 

� DETERMINISTIC interpolation techniques create surfaces from measured 

points, based on either the extent of similarity (e.g., Inverse Distance Weighted) or 

the degree of smoothing (e.g., Radial Basis Functions). These techniques do not use 

a model of random spatial processes. 

Deterministic interpolation techniques can be divided into two groups, global and 

local. Global techniques calculate predictions using the entire dataset. Local 

techniques calculate predictions from the measured points within neighbourhoods, 

which are smaller spatial areas within the larger study area. 

a. Global interpolation – uses every control point available to derive an equation or 

model, so a change in one input value affects the entire map. In other words global 

interpolators determine a single function which is mapped across the whole region.  

The global interpolation is a 2 step method: 

• identification of a statistical relation between the examined parameter and 

the potential explicative factors (latitude, altitude, longitude etc.) 

• computation of the values of the unknown points using the known values of 

the explicative factors. 

b. Local interpolation – uses a sample of control points in estimating an 

unknown value, so a change in an input value only affects the result within the 

neighbour points. In other words the local method is based on the idea that the 

values of the nearest points are similar and the variation of the values is increasing 

with the increasing of the distance between the points. The advantage of local 
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interpolation is that the values of the known points stay unchanged in the process of 

interpolation so it can display the spatial anomalies of a phenomenon. The 

disadvantage of local interpolation are that: 

• Even if displays the spatial anomalies of a phenomenon this does not 

explains causal factors. 

• It needs a dense network of points with known values. 

Some example of deterministic  Interpolation methods:  

• Polynomials,  

• Spatial join (point in polygon),  

• Thiessen-Voronoi polygons,  

• Triangular Irregular Networks (TIN) and linear interpolation,  

• Bi-linear interpolation,  

• Spline,  

• Inverse Distance Weighting (IDW),  

• Radial basis functions. 

 

Whether one of this deterministic methods can be considered local or global 

depends on the parameterization of the search neighbourhood. In other words each 

of this interpolation methods becomes global if the function is settled to fit the entire 

surface or local if the function is settled to fit specified neighbourhoods. For example 

Global Polynomials fits a polynomial to the entire surface, Local Polynomial 

interpolation fits many polynomials, each within specified overlapping 

neighbourhoods.  

� GEOSTATISTICAL interpolation techniques (kriging) utilize the statistical 

properties of the measured points. Geostatistical techniques quantify the spatial 

autocorrelation among measured points and account for the spatial configuration of 

the sample points around the prediction location. 

Establishing the theoretical presentation, an amount of question has arisen:  
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1. Are the predicted data of the COSMO LM accurate enough to be considered 

reliable for areal distribution of precipitation?  

2. Do the characteristics of the data influence the result of interpolation?  

3. Can the interpolation be considered a downscaling method?  

4. Which one of the interpolation method is more efficient in downscaling?  

The objective of these questions is to underline in a simpler and communicative manner 

the characteristics of the data and the interpolation appropriate for the prediction of areal 

precipitation.  

3 Data characteristics 

3.1 How reliable are predicted data compared with the observed data? 

The lack of direct measurement of areal precipitation it is the problem that have been 

faced when trying to find input precipitation data for all impact studies involving the ground 

phase of the water cycle. Reliable direct areal rainfall measurements can be obtained only 

at a very limited spatial scale, while the rainfall process is known to exhibit a high degree 

of variability both in space and time. 

The areal precipitation has been obtained using 3 methods: 

- traditional method, which estimates precipitation at ungauged sites through suitable 

interpolation method. These are based on the hypothesis that rainfall estimates at 

ungauged sites can be obtained as linear or non-linear combinations of the values 

measured at a number of instrumented locations.  

- indirect estimates of areal rainfall based on the measurement provided since the late 

’60s by ground-based meteorological RADARs and remote sensing devices borne on 

satellite platforms, such as RADARs and other sensors. 

- physically-based numerical models of the atmosphere — though relying on various 

theoretical approximations — provide predictions of temporal accumulation values for 

areal rainfall over wide spatial scales. 

Anyway, the accuracy of each and every one of this techniques is always questioned: the 

traditional method is based only on the assumption that rain gauge measurements can 

reliably account for the “true point rainfall”, the indirect method encounters problems of 

calibration and validation using historical data and the data from the physically-based 
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numerical models relays to much on the quality of the model accuracy and also the output 

of such models is not known of recreating in a reliable way the actual precipitation 

measurements.  

So, our attention was drawn towards making a statistical comparison of the predicted and 

observed data in order to see how much the predicted data conserves the statistical 

characteristics of the observed data (which is assumed that they are “true point rainfall”). 

For this, it was used a simple statistical analysis with the purpose of finding whether data 

from several groups have a common mean. That is, to determine whether the groups are 

actually different in characteristics.  

Based on the idea that a valid statistical comparison between analogue variables can not 

only be made at the level of the points but also at the areal level, as revealed in the results 

of ISC research activity, has been found that 79% of the average values of observed 

precipitation it’s included between the area occupied by the maximum and the average are 

of the predicted values of precipitation (fig. 1).  
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Figure 1. Comparison between observed and predicted precipitation values  

(ISC research activity, 2008) 

 

This establishes that development of the predicted values of precipitation follows in a 

satisfactory measure the evolution of the observed precipitation values, which means that, 
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to a great extent, the predicted data conserves the statistical characteristics of the 

observed data. 

3.2 Do the characteristics of the data influence the result of interpolation? 

Knowledge about the data that are to be interpolated is critical to decide on an appropriate 

interpolation method and to understanding the results produced by the interpolation. 

Characteristics of the data (spatial representativeness, measurement accuracy, and 

existence of spatial relationships) important to consider in interpolation (Shelly Eberly, et 

al. 2004) were concentrated in: the analysis of summaries, geometrical configuration, 

distance distribution and linearity of the space between grid points of the data.  

3.2.1 Summaries of the available data.  

It is important to generate some initial summaries of the available data prior to analysis in 

order to obtain a better understanding of its spatial characteristics. Reasonable summaries 

include, a histogram of the overall values distribution, and summary statistics such as the 

data’s mean, standard deviation, and various percentiles (e.g., minimum, median, 

maximum, etc.). 

 
Figure 2. Summaries of the COSMO LM output data 

Histogram shows that our precipitation values are not perfectly normally distributed. One of 

the crosscheck of normal distribution of data is that mean should be closer to the median. 

In our case mean is 3,5mm and median is 2,85mm. Also the data shows an asymmetric 

distribution with positive skewness and a leptokurtic character which means that a great 

number of observations cluster near the average and the rest of observations are skewed 

towards the right. 

Count
Min
Max
Mean
Std. Dev.

 : 305
 : 1,07
 : 11,8
 : 3,5586
 : 2,0793

Skewness
Kurtosis
1-st Quartile
Median
3-rd Quartile

 : 1,7678
 : 5,8295
 : 2,2675
 : 2,85
 : 4,03
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3.2.2 Geometrical configuration of the data  

 Some of the studies (Morrissey et al. 1995) have assumed that the standard error of the 

data disposed in a network, depends not only on the density (which in our case is almost 

0.5 grid points/ Km2) of the points with known values but even on the geometrical 

configuration. The overall conclusion of this studies concluded that the uniform network 

are the best in the terms of accuracy of the representation of the data in space. As the 

output of the Cosmo LM is represented on a regular uniform grid we can establish that in 

terms of spatial structure of measured field the error that might occur in the process of 

interpolation is minimal.    

3.2.3 The distribution of the nearest-neighbour distance  

The distribution of the nearest neighbour distance it is considered also important in many 

studies. It has been examined as mean of distribution (Smith et al. 1986) or as coefficient 

of skewness (Matthew Garcia et al 2008) which is said that constitutes a clustering factor 

(CF). In the case of the regular grid, the clustering factor remains undefined because of 

the singular value of nearest-neighbour distance (2,8Km). 

It was considered though that a CF < 0 (a more distributed network) will produce 

interpolation errors by reduced resolution of the precipitation field and that CF > 0 

(clustering in the network) will produce errors because of reduced areal representation of 

the precipitation field. 

In the case of CF= 0, which is the case of a regular grid, it is considered that both the 

resolution of the precipitation field and the areal representation of the precipitation filed are 

characterized by reduced uncertainty and thus by lower errors of the prediction 

3.2.4 Linearity of the space between grid points of the COSMO LM output   

The data set required for any two-dimensional spatial interpolation exercise consists of 

three variables: the parameter of interest (Z), location in the first spatial dimension (x), and 

location in the second spatial dimension (y). The variables x and y are in the COSMO LM 

data output, longitude and latitude respectively. Such a coordinate system is subject of the 

curvature of the earth’s surface. Statistical spatial interpolation techniques assume some 

sort of spatial correlation structure defined with respect to the linear distance between two 

points in space. (Yan Yu, Deepak Ganesan, Lewis Girod, Deborah Estrin, Ramesh 

Govindan, 2003). Therefore, it is not strictly accurate to calculate the distance between two 

points in a longitude by latitude coordinate system using a simple linear distance function.  
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But in the case of the output data of the COSMO LM, the spatial domain under study is 

small enough in geographic extent (2,8Km) in such the error of calculation will be minimal.  

As a conclusion we can say that the output data of the COSMO LM presents the most 

desirable characteristics in terms of uniform, geometrical and density distribution of the 

data for the purposes of prediction of values trough out the studied territory. 

 

3.3 Interpolation characteristics 

3.3.1 Interpolation = downscaling? 

Based on the available measurement and modelling approaches and the nature of 

application, the tendency adopted, in the bibliographical studies, was to replace the 

unavailable areal rainfall observations, at the required space-time scales, with suitable 

surrogates based on interpolation or downscaling techniques.  

Interpolation is the process of predicting the values of a certain variable of interest at 

unsampled locations based on measured values at points within the area of interest 

(Burrough and McDonnell 1998). 

"Downscaling" is based on the view that regional climate is conditioned by climate on 

larger, for instance continental or even planetary, scales. Information is cascaded "down" 

from larger to smaller scales (Hans von Storch, 2004). In other words, downscaling is any 

process where large (coarse) scale output of models is reduced or made finer. 

Practically both are establishing the same relation of transfer function between coarse 

scale and finer scale, and the spatial and temporal distance is the variables that have to 

solve.  

“In general, interpolation is applied when ground-based rain gauge and/ or radar networks 

are available, while downscaling is applied when using indirect measurements from other 

remote sensing devices, or predicted values from atmospheric models, all of which are 

usually available at much coarser scales than those required in most hydrological 

applications.’’ (L.G. Lanza, J.A. Ramírez and E. Todini - Stochastic rainfall interpolation 

and downscaling, Hydrology and Earth System Sciences, 5(2), 139–143 (2001)).  

“However, a sharp distinction cannot be made since interpolation and downscaling can 

both be incorporated in one single approach, e.g. in order to exploit jointly the information 

content of both remotely sensed and rain gauge data (Fiorucci et al., 2001; Todini, 2001)’’  
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3.3.2 Which one of the interpolation methods is more efficient in downscaling? 

Several characteristics of spatial interpolation have been considered in order to facilitate 

the identification of the most efficient method of transferring the character of the coarse 

scale COSMO LM to a finer scale trough interpolation. These characteristics include point-

based versus areal-based, global versus local, exact versus approximate, stochastic 

versus deterministic, gradual versus abrupt. A compressive description of this 

characteristics has been the subject of a subchapter of a study by Shelly Eberly, Jenise 

Swall, David Holland, Bill Cox, Ellen Baldridge,2004, study on which we will draw our 

conclusion in the following part of the report. 

� Point-based versus Areal-based: 

Point-based interpolation methods predict values at specific points in space, based on 

the values and locations of other individual points in space. Areal interpolation 

methods estimate values for entire zones or areas based on data available for a 

different set of zones or areas. Even if areal interpolation methods seems to 

correspond with our task of representing precipitation on an areal level, a amount of 

downfall – like data shaped in a grid network and even limitation of equipment and 

analogue data (areal-based has the form of:  surrounding area A, B, C, and D, 

estimate the values in area E) - are the subject of our reserve toward choosing this 

method. 

� Global versus Local:  

Global interpolators develop and use a single function that estimates values for the 

entire sample area whether local interpolators break the full sample area into smaller 

pieces that are each evaluated individually by a particular function. Changing one 

input data point - in global interpolation - affects the predictions for the entire area, 

whether in local interpolator, affects only those areas that consider that point in the 

prediction algorithm. In order to choose one of these methods we have to establish if 

the function that is mapped has to use the entire area of concern or has to break up 

the area into smaller blocks that are evaluated individually. Due to the characteristics 

of precipitation that assumes abrupt spatial variance suitable to their complex 

morphology our attention was drawn on local interpolation. Global interpolation may 

be useful for interpolating surfaces with gradual variation over the area of interest. 
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� Exact versus Approximate:  

These two methods are considered when we want to produce a surface that avoids or 

not sharp peaks and troughs in the estimated surface. Also these features are 

important when there is uncertainty about the accuracy of the measured values (i.e., 

measurement error). 

These methods vary, based on whether the predicted surface must include the exact 

values of the measured data points (exact interpolation) or not (as in the case of 

approximate interpolation). 

Even on these characteristics the choice of an interpolation method is driven by the 

phenomenon that we want to represent. For areal representation of precipitation an 

accurate data that reproduces the variation of the precipitation might request that the 

predicted surface has to replicate the measured values exactly - so it would be more 

appropriate to use an exact method of interpolation. 

� Stochastic versus Deterministic:  

Whether methods utilize the concept of randomness is another important 

characteristic to consider. Stochastic methods incorporate the idea of randomness 

into the interpolation process. These methods, which include kriging, allow the 

uncertainty of the predicted values to be calculated. Deterministic methods do not 

incorporate statistical probability theory into development of the predictions. Instead, 

these methods use mathematical formulas or other relationships to interpolate values.  

An example of a deterministic method would be one that derives a predicted value by 

a simple averaging of nearby measured points. Inverse Distance Weighted (IDW) is a 

deterministic method that uses a weighted average of nearby points with distance 

being the only factor influencing calculation of the weight. The advantage of stochastic 

methods is the ability to provide estimates of uncertainty for the spatial interpolation 

model’s output. Kriging is a stochastic method because it assigns weights based not 

only on the distance between surrounding points but also on the spatial 

autocorrelation among the measured points, which is determined by modelling the 

variability between points as a function of separation distance. 

� Gradual versus Abrupt:  

Another distinguishing characteristic of spatial interpolators is the smoothness of the 

predicted surface that is produced. A gradual interpolator produces a surface with 
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gradual, relatively smooth, changes. An abrupt interpolator produces a discontinuous 

surface with sharp changes. The proximal “nearest-neighbour” method, which sets 

unknown points equal to the nearest measured point, is an example of an abrupt 

interpolator.  

As a conclusion drawn by the theoretical information, but yet to be sustained by the 

practical exercise, we can say that – considering the characteristic of our output data 

of the COSMO LM and the complex characteristics of precipitation – the most suitable 

method that can be used for downscaling has to be a point-based, local, exact (with 

reservation due to the accuracy of measurements), deterministic and abrupt method. 

These characteristics of the interpolation method, at the end, are pointing on the 

spatial variability of the precipitation that the predicted areal distribution has to include. 

So, the characteristics of the interpolation has to use a function that evaluates 

individually the samples (local method) on detriment  of the global which accentuates 

the smoothness of the distribution, also for the accuracy of the variability it has to use 

the exact and not the approximate method. Thus, the prediction has not to avoid 

sharp peaks and troughs in the estimated surface. Also for the accuracy of the spatial 

distribution of the precipitation the areal-based method was overlooked because it 

estimates values for entire zones or areas which might lead to a loss of detailed 

information reason for which the abrupt method has to be employed in order to 

realistically catch the gradual changes within the phenomenon. The deterministic 

method it might be the better method because in a regular grid the distances between 

the sampled points it has no major contribution. So, assigning weights based on the 

distance of the surrounding points or modelling the variability between points as a 

function of separation distance as the stochastic method does, do not bring 

contributions to the final result. In other words in a regular grid shaped data the spatial 

variability of a phenomenon can not be contained by the method that attributes 

weights to the neighbouring point  based on any function of distance separation but by 

the method that gives weights taking into consideration mathematical/statistical 

relation between the magnitude of the values. 
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4 Spatial interpolation - methods 

In the task of choosing the right interpolation method I’ve taking into consideration 3 

factors:  

• the objective of the activity;  

• the availability and characteristics of the data (discussed in a previous part of the 

report);  

• the software available. 

The objective would be to find an appropriate method for transferring the characteristics 

from the coarse scale data at which the COSMO LM delivers output to finer scale data that 

preserves the nonlinear characteristics2 of the conditions that generated them and retains 

a high degree of resemblance to the actual or true precipitation field. 

The Data Available are: 

- hourly predicted precipitation values from the COSMO LM digital model with the 

horizontal resolution of 2.8KM (fig.3) ; 

- latitude and longitude of the grid points; 

- hourly observed data from the meteorological stations: S. Mauro, Ponte Camerelle, 

meteorological station A3 highway ; 

Both observed and predicted data were selected for a common period of 24h on 1h step 

from 4th March 2005.   

The activity was developed in ArcGis software, which allows many techniques of 

interpolation. ArcGIS is an integrated collection of GIS software products for handling 

spatial data, developed by Environmental Systems Research Institute (ESRI). GIS is a 

system designed to capture, store, update, manipulate, analyze, and display the 

geographic information. For interpolation of meteorological/climatological parameters the 

Geostatistical Analyst extension of the version ArcGis 9.2. were used, which provides a set 

of tools to create a continuous surface using deterministic and geostatistical methods. Gis 

has been vastly used for areal representation of precipitation: Ahers, B., 2006;  Hevesi, J., 

                                            

2 ”A time-space spectral analysis of the atmosphere certainly reveals pronounced periodically-varying large-
scale motions, but the general nonperiodic behaviour and much of the small-scale structure’’ known in digital 
models as sub-grid scale processes ‘’are direct results of nonlinearity’’. Lorenz, E.N., 1966: ‘’Nonlinearity, 
Weather Prediction and climate deduction’’ Final Report, Statistical forecasting project, 22 pg; 
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Flint, A. & Istok, J. (1992); Fiorucci, P., La Barbera, P., Lanza, L.G. and Minciardi, R., 

2001, D. Kastelec, M. Dolinar, 2000; Tveito,O.E  2002 etc. 

 

5 Interpolation Methods Developed in ArcGis.  

A full description of this characteristics has been the subject of the a studies by Shelly 

Eberly, Jenise Swall, David Holland, Bill Cox, Ellen Baldridge,2004;  

 
Figure 3. In blue the grid points of the COSMO LM model (resolution 2.8 km), in yellow 

meteo station in red the landslide position. 

and ArcGis desktop help, on which we will draw our conclusion in the following part of the 

report. 

5.1 Inverse Distance Weighted (IDW):  

IDW is an exact local deterministic interpolation technique. IDW assumes that the value at 

an unsampled location is a distance-weighted average of values at sampled points within a 

defined neighbourhood surrounding the unsampled point (Burroughs and McDonnell 

1998). In this sense, IDW considers that points closer to the prediction location will have 

more influence on the predicted value than points located farther away (Johnston et al. 

2001).  Specifying a higher power places more weight on the nearer points while a lower 

power increases the influence of points that are further away. Using a lower power will 

result in a smoother interpolated surface being generated (ArcGis Desktop help). 
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IDW uses: 
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zˆ(s0) is the predicted value at the unsampled location s0.. 

N is the number of measured sample points within the neighbourhood defined for s0. 

iλ  are the distance-dependent weights associated with each sample point. 
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Where: 

di0 is the distance between the prediction location s0 and the measured location si. 

P is the power parameter that defines the rate of reduction of the weights as distance 

increases. 

IDW is forced to be an exact interpolator to avoid the division by zero that occurs when 

di0 = 0 at the sampled points. 

IDW is an extremely fast interpolation method, though it is very sensitive to the presence 

of outliers and data clustering. In addition, this method does not provide an implicit 

evaluation of the quality of the predictions (Burrough and McDonnell 1998, Johnston et al. 

2001). 

5.2 Radial Basis Functions (RBFs):  

RBF are a series of exact deterministic interpolation techniques that include different basis 

functions like thin-plate spline, spline with tension, completely regularized spline, 

multiquadric function, and inverse multiquadric spline (ArcGis Desktop help). RBFs can be 

seen as the process of fitting a flexible membrane to the data points so the total curvature 

of the surface is minimized. Being also an exact interpolator, RBFs are different from IDW 



 20 

because they allow the prediction of points above the maximum measured value and 

below the minimum measured value. In other words if IDW is based either on the extent of 

similarity the RBFs is based or the degree of smoothing.  

The predictor defined by a RBF is a linear combination of N basis functions (one for each 

data point in the neighbourhood) of the form: 

10

1

0 )( ·)z(s =

=

+−=∑ ni

N

i

i ss ωφω  

Where: 

φ(r) is a radial basis function. 

r = ||si – so|| is the distance between the prediction location s0 and the measured 

location si. 

{ωi: i = 1, 2, …, n + 1} are the weights to be estimated. 

The vector of weights w=(ω1, ω2, … ωn) is calculated by solving the following system of 

equations: 
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Where: 

Φ is a matrix with i, j th elements corresponding to Φ(||si – so||) for each pair of data 

points. 

1 is a column vector of ones. 

Z is a column vector containing the data points. 

ωn+1 is a bias parameter. 

 

5.3 Polynomial Interpolation (PI)  

PI is an approximate, deterministic interpolation method that fits a mathematical function to 

the measured points. Options range from a first-order polynomial (linear) to a second-order 

polynomial (quadratic) to higher-order polynomials (ArcGis ranges from the first up to 10th 

order polynomial). The predictive surface is typically generated by using a least-squares 

regression fit that minimizes squared differences between the surface and measured 
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points. Because it is an approximate interpolator, the surface is not constrained to going 

through the measured points as with RBF interpolation. In addition, because the method 

generates the best fit (least squares criterion) between the measured points, it is unlikely 

that the fitted line will run outside the minimum or maximum measured value, except once 

it goes beyond the measured area (i.e., extrapolation). 

There are two types of polynomial interpolation — global and local.  

• Global polynomial interpolation fits a polynomial model to the entire surface based 

on all measured points. 

• Local polynomial interpolation fits multiple polynomials using subsets of the 

measured points.  

Global polynomial interpolation is more appropriate for a surface that varies slowly over 

the area of interest, while local polynomial interpolation captures more of the short-range 

variation in addition to the long-range trend. Global polynomial interpolation accounts for 

bends in the data — one bend with quadratic, two bends with cubic, and so forth. Surfaces 

that do not display a series of bends, however, such as one that increases, flattens out, 

and increases again, can be better represented using local polynomial interpolation. Both 

the global and local methods produce a gradual predicted surface. 

5.4 Kriging  

Krigging is an optimal interpolation based on regression against observed z values of 

surrounding data points, weighted according to spatial covariance values (Geoff Bohling, 

2003). 

Geostatistical interpolation methods are stochastic methods, with kriging being the most 

well-known representative of this category. Kriging methods are gradual, local, and may or 

may not be exact (perfectly reproduce the measured data). Also, they are not by definition 

set to constrain the predicted values to the range of the measured values. Similar to the 

IDW method, kriging calculates weights for measured points in deriving predicted values 

for unmeasured locations. With kriging, however, those weights are based not only on 

distance between points, but also the variation between measured points as a function of 

distance. The kriging process is composed of two parts — analysis of this spatial variation 

and calculation of predicted values. 

Spatial variation is analyzed using variograms, which plot the variance of paired sample 

measurements as a function of distance between samples. An appropriate parametric 
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model is then typically fitted to the empirical variogram and utilized to calculate distance 

weights for interpolation. Kriging selects weights so that the estimates are unbiased and 

the estimation variance is minimized. This process is similar to regression analysis in that 

a continuous curve is fitted to the data points in the variogram.  

Kriging creates a continuous surface for the entire study area using weights calculated 

based on the variogram model and the values and location of the measured points. The 

analyst has the ability to adjust the distance or number of measured points that are 

considered in making predictions for each point. A fixed search radius method will consider 

all measured points within a specified distance of each point being predicted, while a 

variable search radius method will utilize a specified number of measured points within 

varying distances for each prediction.   

Because kriging employs a statistical model, there are certain assumptions that must be 

met. First, it is assumed that the spatial variation is homogenous across the study area 

and depends only on the distance between measured sites. There are different kriging 

methods and each has other assumptions that must be met.  

Kriging methods are often classified as linear and nonlinear (Moyeed and Papritz, 2002; 

Papritz and Moyeed, 1999). There are no formal definitions for linear and nonlinear kriging.   

5.4.1 Linear kriging (LK)  

LK can be defined as kriging methods that derive the estimation using observed values by 

assuming a normal distribution of the samples. Linear kriging may include:  

• Simple Kriging,  

• Ordinary Kriging and  

• Universal Kriging. 

5.4.2 Non-linear kriging (NLK) 

NLK are those methods that derive predictions based on the transformed values of the 

observed data. Nonlinear kriging methods consist of: 

• Disjunctive Kriging,  

• Indicator Kriging,  

• multiGaussian kriging,  

• lognormal Ordinary Kriging  
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• Model-Based Kriging. 

Nonlinear kriging methods have two major advantages over linear kriging: 

1) they were developed to model the conditional distribution of the primary variable (i.e., 

to give an estimate of its probability distribution conditional on the available 

information); 

2)  their estimations should theoretically be more precise when a Gaussian random 

process is inappropriate to model the observations. 

The basic form of the kriging is (Geoff Bohling, 2003): 
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With 

u, uα: location vectors for estimation point and one of the neighbouring data points, 

indexed by α 

n(u):  number of data points in local neighbourhood used for estimation of Z*(u) 

m(u), m (uα): expected values (means) of Z(u) and (Z uα); 

λα(u):  kriging weight assigned to datum Z(uα) for estimation location u; same datum will 

receive different weight for different estimation location 

The goal is to determine weights, αλ  , that minimize the variance of the estimator 

( ) ( ) ( ){ }uZuZVaruE −= *2σ  

Under the unbiasedness constraint ( ){ } 0)(* =− uZuZE . 

The random field (RF) Z(u) is decomposed into residual and trend components, 

Z(u)=R(u)+m(u) with the residual component treated as an RF with a stationary mean of 0 

and a stationary covariance (a function of lag, h, but not of position, u): 
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The residual covariance function is generally derived from the input semivariogram model,  

(h).y - Sill y(h)-(0) C(h)C RR ==  

Thus the semivariogram we feed to a kriging program should represent the residual 

component of the variable. 

The three main kriging variants, simple, ordinary and kriging with a trend (universal), differ 

in their treatments of the trend component, m(u).  

Resuming the mathematical expressions: 

• Simple kriging assumes that there is a known constant mean, that there is no 

underlying trend, and that all variation is statistical (Wackernagel, 2003).  

• Ordinary kriging is similar except it assumes that there is an unknown constant 

mean that must be estimated based on the data  and the data have no trend (Clark 

and Harper, 2001; Goovaerts, 1997).  

• Universal kriging differs from the other two methods in that it assumes that there is 

a trend in the surface that partly explains the data’s variations. In other words it is 

incorporating the local trend within the neighbourhood search window as a smoothly 

varying function of the coordinates. Universal Kriging estimates the trend 

components within each search neighbourhood window and then performs Simple 

Kriging on the corresponding residuals. This should only be utilized when it is 

known that there is a trend in the data.  

• Disjunctive Kriging is a nonlinear method that is more general than ordinary kriging. 

It considers functions of the data rather than using only the data. It assumes that all 

data pairs come from a bivariate normal distribution. The theory of disjunctive 

kriging and examples of its practical application are described by Armstrong and 

Matheron (1986a; 1986b), Rendu (1980) and Oliver et al. (1996). 

6 Parameterization  

Spatial interpolation methods in ArcGis have various decision parameters to choose from, 

no matter if we consider trend based methods or weight based methods. Based on the 

knowledge of the nature of data being sampled and processes involved (in our case 

rainfall on 305 locations) some parameters can be fixed before the calculations start. The 

choices that are made affect the results of the interpolation.  
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Interpolation methods such as IDW and RBF (weight based methods) require fewer 

decisions or parameters to manipulate in comparison to kriging methods. Parameters 

important for determining the validity of the surface model include (which may vary by 

model); surrounding point weight, neighbourhood search, and anisotropy. IDW and RBF 

both have similar parameters for determining the small scale variation involved within the 

dataset. Kriging interpolation methods utilize functions such as semivariogram and 

covariance to assess the weight given to surrounding data points, based on distance and 

direction. 

Finding the most suitable weight for IDW or RBF is accomplished easily in 

GeoStatistical Analyst 9.2 through the “optimize power” feature or consecutively adjusting 

it during the procedure until the lowest RMS was obtained.   

A curve is fit (quadratic local polynomial equation) to the points and from the curve, the 

power that provides the smallest RMS is determined as the optimal power (ESRI, 2004). 

When determining the influence of surrounding data points (i.e. neighbourhood) for 

weighing interpolation calculations, careful analysis of the involved parameters is 

essential. 

The neighbourhood search is used to define the neighbourhood shape and the 

constraints of the points within the neighbourhood that will be used in the prediction of an 

unmeasured location. Neighbourhood search sizes should be large enough to capture the 

variability in the data, but small enough to avoid capturing distant points, which create 

reduces spatial autocorrelation with the prediction location, hence jeopardizing the 

appropriateness of stationarity (Isaaks and Srivastava, 1989). 

Anisotropy is a characteristic of a random process that shows higher autocorrelation in 

one direction than another. 

Although no measures are known that would or could be universally applied to choose the 

optimal set of parameters for kriging, cross-validation (a.k.a. "leaving-one-out" method) is 

often used to select an interpolator from different  number of candidate (Davis, 1987).   

Cross validation provides an array of statistical and graphical outputs for comparison of 

different parameters before surface model creation, allowing for manipulation of 

parameters if needed. 

Among the prediction error output statistics for cross validation of deterministic and 

stochastic interpolation methods is the mean prediction error (MPE) and root-mean square 
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(RMS). The RMS statistic is a measurement of how close the predicted values are to the 

measured values, in which smaller values are preferred. The mean prediction error 

statistic (MPE) is a measure of the bias within the model, which will produce values 

centered on zero for unbiased models. 

Stochastic methods provide additional statistics as an extra measure of uncertainty and 

potential error for the prediction model. The kriging standard error, a statistical measure of 

uncertainty in the prediction, is calculated by the square root of the kriging variance. RMS 

and MPE values can be “standardized” to account for scale dependence, by dividing the 

RMS and the MPE each by the standard prediction error to produce RMS standardized 

and MPE standardized. The RMS standardized is a measure of variability in addition to the 

kriging standard error, in which RMS standardized values will underestimate the variability 

when greater than one and overestimate variability where values are less than one (ESRI, 

2004). 

The use of cross validation prediction error statistics can be a beneficial tool for finding 

differences among interpolation methods, however may fall short of clear determination for 

finding the “optimal” interpolation method. In such situations, Pearson’s correlation 

coefficient and standard deviation values calculations may be beneficial for interpolation 

model determination (Isaaks and Srivastava, 1989). 

So our decision in choosing the best method of interpolation was highly influenced by the 

cross-validation techniques and in addition Pearson’s correlation coefficient and standard 

deviation values. 

7 Results and discussions of the interpolation methods developed 

in Arcgis  

7.1 IDW 

This spatial interpolation method has various parameters decision. The descriptions below 

include the options used in Geostatistical Analyst extend of ArcGis 9,2. 

Parameters include: β - the weighting power (exponent); δ - the smoothing parameter; ρ - 

the anisotropy ratio; θ - the anisotropy angle.  

The method used to consider best IDW interpolation was optimizing parameters via cross-

validation.  The parameters were simultaneously adjusted during the procedure until the 

lowest RMS was obtained. 
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At the end, the lowest RMS (0,8272) was obtained using a low power (two) in order to give 

influence to the points situated farther away too, and the number of points used for each 

cell's calculation was limited at 15 to reduce the risk of errors, because points far from the 

cell location where the prediction is being made, might have no spatial correlation.  Also 

the smoothing parameter was not considered, on benefit of standard option, as it 

accentuated ‘’ the bulls eye effect’’ (concentric circles around the measured value at the 

locations). 

The overall predicted contour map is shown in Figure 4 a. This surface shows low degree 

of smoothness,  a increased spatial variance and even if the power has a low value, the 

prediction displays the effect of the concentration around the values of location still causes 

‘’bulls eye effect’’. 

Figure 4 b. shows the predicted rainfall by the Cosmo LM plotted against interpolated 

values for the same locations. The linear correlation coefficient r=0.72 confirms relatively 

good overall agreement between independent (Cosmo LM output) and dependent 

(interpolated) values. The fact that the larger values of both variables (predicted COSMO 

LM and interpolated values) are associated gives a positive related character of correlation 

analysis. 

The ability to predict extreme values is an important benchmark in evaluating the 

performance of an interpolator. Of the extreme values, the lowest values were predicted  

 
Figure 4 a. Interpolated surface using smooth IDW 
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better with dependent and independent low extremes being, up to some extent, similar but 

the highest values were inaccurately predicted.   

 
Figure 4 b. Cross-validation of the IDW interpolated prediction 

Figure 4 c. shows the distribution of errors (value dependent minus value independent, or 

residual) as a function of the magnitude of independent values (Cosmo LM output).The 

residuals seems to have a weak tendency of under prediction of the values, with the 

increasing of the independent variables. Also the over predicted residuals of the 

dependent variable tend to have the outlier characteristics (residuals that fall far from the 

regression line) and have a greater variance compared with the under prediction of the 

smaller dependent values. 

 
Figure 4 c. Residuals of the IDW interpolated prediction 
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7.2 Radial Basis functions 

RBFs can be seen as the process of fitting a flexible membrane to the data points so the 

total curvature of the surface is minimized. Being also an exact interpolator, RBFs are 

different from IDW because they allow the prediction of points above the maximum 

measured value and below the minimum measured value. 

There are five different basis functions:  

• Thin-plate spline  

• Spline with tension  

• Completely regularized spline  

• Multiquadric function  

• Inverse multiquadric function  

Each basis function has a different shape and results in a slightly different interpolation 

surface. Also the parameters selected for each of the five basis functions could bring an 

amount of changes in the final areal distribution of the independent variable. That is way 

the selection of the optimal interpolated prediction, for each of the five basis functions, was 

done by optimization of the parameters value until the smallest MPE and RMS was 

obtained for each of the interpolated predictions. For the optimization and selection of the 

parameter’s values was used an identical approach, for the five different function in order 

to set a commune base to start from. In terms of the neighbourhood values ArcGis 

presents two functions: standard and smooth. The standard search neighbourhood is 

defined by the Ellipse parameters: Angle, Major Semiaxis, and Minor Semiaxis. The 

Smooth Interpolation option creates an outer ellipse and an inner ellipse at a distance 

equal to the Major Semiaxis multiplied by the Smooth Factor. Prediction to each point uses 

data inside each corresponding circle/ellipse (ArcGis Desktop help). For the standard 

search neighbourhood after the optimisation of the parameters (angle=0; 

neighbourhoods=15; major and minor semiaxis = 0,175), a good fitted surface with the 

smallest RMS (table 1) was predicted by the RBFs with completed regularized spline 

(RMS=0,177), followed by multiquadric (RMS=0,181) and inverse multiquadric RBFs 

(RMS=0,182). But when the smoothing effect was added (the same optimized parameters 

as the standard search neighbourhood were used and in addition a smooth factor of 0,5) 

the only RBFs available in ArcGis 9.2, the inverse multiquadric predicted the best 

interpolated surface, having a RMS equal to 0,1501. Changing the smooth factor by 
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increasing or decreasing it with a pass of 0,1 confirmed the fact that still RBFs with a 

smooth factor of 0,5 best predicts the interpolated surface.    

Table 1 . Comparison of the RBFs (MPE = mean predicted error, RMS = root mean square 

of predicted surface): 

Radial Basis Functions MPE RMS 

Completely regularized Spline 0,00278 0,1778 

Spline with tension 0,0000841 0,2993 

Multiquadric 0,001143 0,1811 

Inverse multiquadric 0,001982 0,1824 

Standard 

Thin plate spline 0,0006502 0,3018 

Smooth Inverse multiquadric 0,0003563 0,1501 

Using the cross-validation of the data (fig. 5b and 5c) obtained by inverse multiquadric 

RBFs with smoothing factor and the graphical representation (fig. 6.a) an amount of 

characteristics could be underlined. The RBFs interpolation produces: 

- a smooth surface prediction (fig.6a) due to the fitting of the interpolation curve trough 

the measured sample values while minimizing the total curvature of the surface which 

can be translated as - prediction above the maximum and below the minimum 

measured values; 
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Figure 5 a. Interpolated surface using smooth inverse multiquadric RBFs 

 
Figure 5 b. Cross-validation of the RBFs interpolated prediction 

- an almost perfect correlation between the dependent and independent variables 

(r=0,99) due to the fact that RBF is an exact method of interpolation. The higher 

correlation of the RBFs, compared with another exact method IDW, might be caused 

by the higher smoothing factor. 

- best prediction made in the area with small values of precipitation, poor prediction in 

the area of large and medium  precipitation; 
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Figure 5 b. Residuals of the RBFs interpolated prediction 

- a more accentuated underestimated prediction compared with the overestimation of 

the small precipitation, characteristic observed even in the area of largest 

precipitation; 

- an overall slightly underestimate prediction with 155 underestimated values and 150 

over estimated and maximum of 11,6 mm compared with the 11,8 mm of independent 

variable. 

7.3 Kriging 

If the other interpolation methods (inverse distance squared, splines, radial basis 

functions, triangulation, etc.) estimate the value at a given location as a weighted sum of 

data values at surrounding locations, Kriging assigns weights according to a (moderately) 

data-driven weighting function, rather than an arbitrary function, but it is still just an 

interpolation algorithm and will give very similar results to others in many cases (Isaaks 

and Srivastava, 1989). 

Three kriging methods have been considerate for the analysis of the best geostatistic 

interpolation models that include autocorrelation — that is, the statistical relationships 

among the measured points. 

Even in this case the cross-validation was used in order to select the most suitable of the 

methods. Also a statistical description was brought in, with the purpose of drawing a 

complete image of the efficiency of the methods (tab. 2). 
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Kriging 

MPE RMS ASE MS RMSS Std.dv Mean. Max. Min. Corel. 
Coef.(r) 

Ordinary 0,001845 0,9897 1,583 0,000746 0,6261 1.9 3,56 10,2 1,12 0,66 

Simple 0,001118 0,4219 1,108 0,000620 0,3839 1.9 3,55 10,2 1,10 0,92 

Universal 0,004583 0,4037 0,427 0,007972 0,9516 1,97 3,56 10,6 1,03 0,95 

Disjunctive 0,0119 0,4955 1,289 0,008148 0,3863 1,84 3,57 9,9 1,2 0,94 

 Cosmo LM output 2,05 3,55 11,8 1.07  

Table 2. Cross-validation and statistics of the predicted dependent variable 

Cross-validation is used to determine "how good" the model is. The goal should be to have 

standardized mean prediction errors (MS) near 0, small root-mean-squared prediction 

errors (RMS), average standard error (ASE) near root-mean-squared prediction errors 

(RMS), and standardized root-mean-squared prediction errors (RMSS) near 1.  

The selection of the optimal interpolated prediction, for each of the three kriging method, 

was done by comparing the parameters of the cross-validation characteristics in 

conformity with the description: 

- a optimal prediction has to be unbiased (centered on the true values). If the prediction 

errors are unbiased, the mean prediction error (MPE) should be near zero.  

- a optimal prediction has to have a valid assessment of uncertainty of the prediction 

standard errors (MS).  

Each of the kriging methods gives the estimated prediction kriging standard errors. 

Besides making predictions, it is estimated the variability of the predictions from the true 

values. It is important to get the correct variability. Examples of estimation of variability: 

- If the average standard errors (ASE) are close to the root-mean-squared prediction 

errors (RMS), the variability in prediction It is correctly assessed.  

- If the average standard errors (ASE) are greater than the root-mean-squared 

prediction errors (RMS), it is overestimated the variability of the predictions; 

- if the average standard errors (ASE) are less than the root-mean-squared prediction 

errors (RMS), it is underestimating the variability in the predictions.  

Another way to look at this is to divide each prediction error by its estimated prediction 

standard error. They should be similar, on average, so the root-mean-squared 

standardized errors should be close to 1 if the prediction standard errors are valid: 

- If the root-mean-squared standardized errors (RMSS) are greater than 1, it is 

underestimated the variability in the predictions; 
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- if the root-mean-squared standardized errors (RMSS) are less than 1, it is 

overestimated the variability in the predictions.   

In terms of fitted model, kriging was represented by the Spherical model which was 

chosen for all kriging methods. With this option, Kriging uses the mathematical function 

specified by the method to fit a line or curve to the semi-variance date in the semi-

variogram. Spherical method seems to better fit the spatial variation of the data set 

compared with other methods: Circular, Gaussian, Exponential, Tetraspherical etc. The 

RMS was used to validate the best fitting model. 

 

� Ordinary Kriging  

For ordinary kriging, rather than assuming that the mean is constant over the entire 

domain, it is assumed that it is constant in the local neighbourhood of each estimation 

point, that is that ( m u ) = m(u) a for each nearby data value, Z (uα) , that we are 

using to estimate Z(u). 

The ordinary kriging prediction presents the following characteristics : 

- a level of the bias higher compared with the simple kriging’s prediction but much 

better compared with the rest of the kriging predictions; 

- an overestimated level of variability in prediction (ASE > RMS) but closer to a 

correct assessing, compared with the simple kriging methods; 

- the prediction tends to under predict large values and over predict small values, as 

shown in the table 2 (max. 10,2 mm and min. 1, 12 mm); 

- a not so good correlation between the dependent and independent variables 

(r=0,66)  

- considerable extreme residual values settled between 1,2 mm for over prediction 

and - 2,3 mm for under prediction; 

- best prediction made in the area with small values of precipitation, poor prediction in 

the area of large and medium  precipitation; 
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Figure 6 a. Interpolated surface using Ordinary Kriging 

- a more accentuated underestimated prediction compared with the overestimation of 

the large precipitation; 

- in the area of small precipitation the variability of the over estimated prediction is 

higher compared with the variability of the under estimated prediction; 

 

 
Figure 6 b. Cross-validation of the Ordinary kriging interpolated prediction 
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Figure 6 c. Residuals of the Ordinary kriging interpolated prediction 

� Simple kriging  

For simple kriging, it was assumed that the trend component is a constant and known 

mean, m(u) = m. 

Characteristics (drawn from tabs. 2 and figs 7 a, b ,c) of prediction with simple kriging: 

- Simple kriging prediction presents the lowest  bias level, the MPE =0, 00118, 

and a standard deviation (1,9) close to that of the independent data ; 

- the linear correlation coefficient r=0.92 confirms a very good overall agreement 

between independent and dependent variables; 

 
Figure 7 a. Interpolated surface using Simple Kriging 
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- poor assessment of  the variability in prediction as the distance between the 

ASE and RMS is the highest ; 

- the prediction tends to under predict large values and over predict small values, 

as shown in the table, with considerable extreme residual range (similar with the 

ordinary kriging residuals) ,values settled between 1,2 for over prediction and  -2,3 for 

under prediction; 

- simple kriging prediction presents an overall overestimated prediction with 166 

overestimated values and 139 underestimated predicted values; 

 
Figure 7 b. Cross-validation of the Simple kriging interpolated prediction 

 
Figure 7 c. Residuals of the Simple Kriging interpolated prediction 
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� Universal kriging the method known as kriging with a trend is much like ordinary  

kriging, except that instead of fitting just a local mean in the neighbourhood of the 

estimation point, it fits a linear or higher-order trend in the (x,y) coordinates of the data 

points. 

The cross validation of the Universal kriging prediction has underlined the following 

characteristics: 

- in terms of bias, accuracy and variability of the prediction the Universal kriging 

used  

 
Figure 8 a. Interpolated surface using Universal Kriging 

on the grided Cosmo LM data performs better than the ordinary kriging as it uses 

more the characteristics of the geometry of data; 

- the relation of correlation between the dependent and independent variable is 

explained in a proportion of r= 0,95. 

- Universal kriging presents an almost exact level of variability in prediction (ASE 

> RMS) compared with the other interpolation methods, being slightly overestimated  ; 

- the prediction tends to under predict large values and also the small one, as 

shown in the table 2 (max. 10,6 mm and min. 1, 03 mm); 
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Figure 8 b. Cross-validation of the Universal kriging interpolated prediction 

 
Figure 8 c.  Residuals of the Universal Kriging interpolated prediction 

- considerable extreme residual values settled between 1,3 mm for over prediction 

and   - 2,1 mm for under prediction; 

- universal kriging predicts better in the area with small values of precipitation and 

makes a more accurate (less variable) underestimation compared with the 

overestimation;  

- in the area of small precipitation the variability of the over estimated prediction is 

higher compared with the variability of the under estimated prediction; 
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� Disjunctive Kriging produces a nonlinear unbiased, distribution-dependent estimator 

with the characteristics of minimum variance of errors (Burrough and McDonnell, 

1998; Yates et al., 1986). 

Considering the functions of the data rather than using only the data the Disjunctive 

Kriging predicts, based on the characteristics of the Cosmo LM output: 

- a accurate prediction with a low bias (MPE = 0,0119) but a not so good accuracy of 

the variability wich is highly overestimated (ASE > RMS); 

- disjunctive kriging present also a low standard deviation 1,84 compared with the 

independent data (2,05) which shows that the prediction is not taken into 

consideration the actual data; 

 
Figure 9 a. Interpolated surface using Disjunctive Kriging 

- like all the interpolation method presented even DK under estimates the high and  

overestimates the low precipitations but in a more accentuated manner, also a 

characteristic of distribution-dependent estimator; 

- creates considerable amplitude for residual values settled between 1,2 mm for over 

prediction and   - 2,7 mm for under prediction; 

- the prediction of DK shows a very high agreement with the independent data, the 

correlation coefficient being situated at 0,94;  
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Figure 9 b. Cross-validation of the Disjunctive kriging interpolated prediction 

 
Figure 9 c.  Residuals of the Disjunctive Kriging interpolated prediction 

- DK predicts better in the area with small values of precipitation where it makes a 

more accurate (less variable) underestimation compared with the overestimation;  

- In the area with high values of precipitation DK has a more accentuated tendency of 

under prediction.  

- In the area with mean values of precipitation DK has the tendency of over 

predicting;  

As a initial conclusion concerning the best prediction among the kriging models used 

in this study, we can say that the best prediction is obtained with simple kriging. On 

this assumption we have to take into consideration that the main factor that leaded our 

assumption towards this conclusion is the spatial characteristics of the data (geometry 
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of the distribution of the data, the distribution of the nearest-neighbour distance,). 

Many other interpolation studies that used kriging concluded different based on the 

different type of data characteristics: 

- ‘’universal kriging results were encouraging and comparable with the subjectively 

obtained map’’ (D. Kastelec, 2002), the study was concentrated on mean annual 

precipitation on 1 KM regular grid data; 

- ‘’Indicator kriging gives better estimates than traditional kriging’’ (X. Sun, M.J. 

Manton and E.E. Ebert, 2003), the study is combining rain gauge measurements with 

satellite infrared data ; 

- ‘’ordinary kriging, the best approach to depict the unique variation within the data 

set’’ (Julie Earls.2006); study is concentrated on data obtained on radar (NEXRAD); 

The features that made the Simple kriging the best method of interpolation (within the 

stochastic methods) lays in the characteristics of the data both at the level of 

geometry and at the level of measurements and less on modelling the variability of the 

data as a function of separation distance.  

From the studied bibliography (Oliver Schabenberger and Carol A. Gotway  2004) it 

was found that what brings these features in the interpolation computations as a 

decisive selection element is the nugget effect. It can be attributed to measurements 

errors or spatial source of variation at distance smaller than the sampling interval. In 

other words the nugget effect is simply the sum of the measurement error and 

microscale variation. Both the measurements error (defined as accuracy of the 

variability) and spatial source of variation (thinking at the regular grid) are at level of 

the Coasmo LM output  minimal and thus it can be said that the nugget effect is also 

minimal. 

This is mostly, important, if we consider a property of simply kriging  which says that  

when a no nugget effect is encountered, then ˆU (si) =U(si).  More clearly – 

without nugget effect, kriging interpolates, with nugget effect kriging it 

smooths.  Interpolation means following the independent data (observed or 

predicted) closely.          

Also It was noted , that a good predictor should be variable, in the sense that it follows 

the independent data closely. The simple kriging predictor has an this property. 
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Consider predicting at locations where data are actually independent,  the predictor 

psk(Z;s0) becomes  psk(Z; [s1,….,sn]’), and in (the simple kriging predictor equation): 

 

). µ(s)- (Z(s) ')()(' )s(Z;p 1

000sk ∑ −+=+= σµλλ ssZ  

when replacing Cov  [Z(s0),Z(s)]=σ’ with  [Z(s),Z(s)]=Σ and µ(s0) with µ(s) it is obtained 
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Where: 

z(s) is the predicted value at the unsampled location s0.. 

λ  are the distance-dependent weights  

µ(s)     mean of the random field 

 

In this way, the simple kriging predictor when is interpolating is taking into 

consideration  the independent data not only the variability of the data as a function of 

separation distance . ‘’ It is an ‘exact’ interpolator’’(Oliver Schabenberger and Carol A. 

Gotway  2004). 

That is way, when cross-validation is performed, the prediction values of the simple 

kriging are most likely centered on the true value (low bias), the mean error ,the RMS 

and RMSS of the prediction have the smallest values, the correlation between the 

dependent and independent variables is most explained (92%), the residuals have a 

small  fluctuation range but on the other side the variability of the prediction is less 

correctly assessed (simple Kriging is the method with the highest overestimated 

variability ASE > RMSPE).   

  

7.4 Polynomial interpolation  

� Local Polynomial interpolation is a sensitive to the neighbourhood distance that fits 

the specified order (zero, first, second, third, and so on) polynomial using all points 
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only within the defined neighbourhood. The neighbourhoods overlap and the value 

used for each prediction is the value of the fitted polynomial at the center of the 

neighbourhood. (ArcGis Desktop help). 

Other theoretical characteristics are: 

• Creates a surface from many different polynomial formulas.  

• Each is optimized for a specified neighborhood. 

• The neighborhood shape, maximum and minimum number of points, and a sector 

configuration can be specified. 

• The sample points in a neighbourhood can be weighted by their distance from the 

prediction location. 

• Local Polynomial interpolation maps can capture the short-range variation 

Characteristics of the Local polynomial prediction underlined by the cross-validation 

method (Fig. 9 a, b, c): 

- a smooth surface prediction (fig.9 a) due to the fitting of the interpolation curve 

trough the measured sample; 

- a good coefficient gradient between the dependent and independent variables 

(r=0,83); 

- a clear tendency of underestimation of the prediction MPE (-0,0056) and a low 

degree of bias; 

- the prediction tends to under predict large values (max. of prediction 9,6mm) and 

over predict small values (min of prediction 1,3 mm); 

- presents a high fluctuation of the residuals situated between -3,2 mm for under    

prediction and 1,28 mm for over prediction; 

- a higher variability of the over predicted residuals along the trend line in the area of 

low precipitation. 
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Figure 10 a. Interpolated surface using Local Polynomial interpolation 

 
Figure 10 b. Cross-validation of the Local polynomial  prediction 

 
Figure 10 c. Residuals of the Local polynomial interpolated prediction 
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� Global Polynomial interpolation fits a smooth surface that is defined by a 

mathematical function (a polynomial) to the input sample points. The Global 

Polynomial surface changes gradually and captures coarse-scale pattern in the data. 

(ArcGis Desktop help) 

This method generates a smooth surface that does not have to fit to measured points 

and does not use a search neighbourhood.  A polynomial is used to fit the surface to 

the data, so a first order polynomial would have no bends in it, a second order would 

have one bend, etc.  This method is best used for data that varies slowly over a 

landscape or for looking at general trends.  It is sensitive to outliers, especially at the 

edge of the area of interest.  

ArcGis 9,2 offers 10 different order polynomials that can be used from the Global 

Polynomial interpolation Set parameters dialog box. 

The selected global polynomial of different order brings changes in the final prediction. 

That is way the selection of the optimal order of interpolation, was done by 

optimization of the parameters value until the smallest RMS was obtained for each of 

the polynomial orders (table 3). 

 

Global Polynomial  
interpolation (order) 

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 

MPE -0,00051 0,001618 0,004909 -0,00016 0,00163 -0,00867 -0,02183 0,01316 0,01244 0,01712 
RMS 1,815 1,795 1,778 1,706 1,587 1,435 1,495 1,111 0,915 0,953 

Table 3. Mean error and root-mean-error of the 10 different order global polynomial 

prediction 

Comparing the RMS of the polynomials with different order has been decided that for 

a regular grid data, the best prediction is offered by the 9th order-polynomial.    

Characteristics of  this global polynomial prediction: 

- creates smooth surfaces and identifying long-range trends in the dataset, therefore 

the prediction fails to represent the short range variability of the phenomenon. 

- being sensitive to outliers, the edges of the predicted area are generating errors. 

- presents a high fluctuation of the residuals situated between -4,1 mm for under  

prediction and 5,4 mm for over prediction; 
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Figure 11 a. Interpolated surface using Global 9th order Polynomial interpolation 

- presents a low accuracy of the variability of the prediction; 

- also presents a good correlation (r=0,86) of the dependent and independent 

variables;  

- the over and under prediction has a constant variability no matter of the small or 

large independent variable (precipitation);  

 
Figure 11 b. Cross-validation of the Global 9th order polynomial  prediction 

- the prediction tends to under predict not only the large values (max. of prediction 

10,5mm) but even the small values (min of prediction -0.4 mm); 
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Figure 11 c. Residuals of the Global  9th order Polynomial interpolated prediction 

 

8 Discussion  

All interpolation methods create similar evolution and gradual increases and decreasing of 

the predicted area along the high and low independent values. The global similarities 

among methods were correlated to the similarity of generated statistics for each method. 

On a smaller scale, some qualitative variation did exist across all interpolation methods 

(table 4).   

Interpolation method 
MPE RMS 

Corel. 
coef.(r)

 Std.dv
 

Mean. Max. Min. 

IDW 0,01413 0,8272 0,72 1,5 3,57 8,6 1,4 
RBF 0,000356 0,1501 0,99 2,06 3,55 11,6 1,04 

Local Polynomial -0,00565 0,595 0,82 1,7 3,55 9,5 1,3 
Global Polynomial 0,01244 0,915 0,86 1,98 3,57 10,6 -0.3 
Ordinary Kriging 0,001845 0,9897 0,66 1.9 3,56 10,2 1,12 
Simple Kriging 0,001118 0,4219 0,92 1.4 3,55 10,2 1,10 
Universal Kriging 0,004583 0,4037 0,95 1,97 3,56 10,6 1,03 
Disjunctive kriging 0,0119 0,4955 0,94 1,8 3,57 9,9 1,2 

Table 4. Statistical properties of the predictions. 

The IDW surface model, based on the extent of smoothing, produced “bulls-eye” patterns, 

especially along higher values areas. Thus, even though IDW produced respectable 

statistics for both cross validation and validation, it was not considered a suitable final 

surface model choice. 

The RBF methods, based on the degree of smoothing, are also affected by errors of 

prediction and under prediction and over prediction. RBF methods typically produce high 



 49 

error or uncertainty in areas where values abruptly changes due to the rubber sheeting 

applied to the data but overall, RBFs, statistically, produced the highest quality prediction 

statistics compare with all other interpolation methods. 

Overall the trend based methods (kriging) have had a good concentration of the predicted 

values along the centered values which made very smooth prediction maps.  

Although, smoother surface models are more visually aesthetic, a smoother surface 

understates the variability and may be misleading from a qualitative point of view (Isaaks 

and Srivastava, 1989).  

As a comparison, all kriging methods produced similar results (more than other 

interpolation models), both in prediction statistics and of output map features. Universal 

kriging compared with ordinary kriging appeared to contain less bias and lower RMS 

values in cross validation and validation statistics, thus the more qualified surface 

modeller. 

In choosing a suitable optimal stochastic model for modelling a final surface from a Cosmo 

LM output, simple  kriging did stand out when all aspects (cross-validation, validation, and 

output product) were examined.  

All methods, statistically (RMS, MPE, and where applicable, RMS standardized) produced 

a optimal quality output surface. RMS values (a measure of the paired relationship 

between observed and measured values) indicated greater accuracy with lower RMS 

values, which varied from 0,15 with RBFs inverse multiquadric  to 0.98 with Ordinary 

kriging, RMS values for the other interpolation methods used here fell between these RMS 

values for OK and RBFs methods. 

Another measure of data variability is the mean prediction error (MPE), which is a 

measurement of data bias within the prediction surface model. 

Since the MPE value is dependent on the scale of the data, kriging models provide a good 

representative of the MPE and the standardized MPE (the MPE divided by the kriging 

standard error (i.e. the square root of the variance prediction)) but still the RBFs performed 

better. 

Examination of Pearson correlation coefficient and standard deviation values were useful 

enough for determining between interpolation prediction models. All interpolation methods 

displayed strong positive correlation between observed and predicted values, from a 

maximum of correlation by the RBFs to a minimal correlation by Ordinary kriging.  



 50 

9 Conclusions 

The comparison proposed in this study has allowed identifying the most accurate of 8 

different interpolation methods used to derive areal precipitation from a COSMO LM 

output.  

The spatial interpolation of daily rainfall output of the Cosmo LM was studied using the 

following interpolation methods: IDW, Radial Basis Functions and Ordinary kriging, Simple 

Kriging, Universal Kriging, Disjunctive kriging. The performance of each method was 

evaluated by cross-validation. There were no significant differences on the interpolations 

used but Radial Basis Function (Inverse Multiquadric) was the better efficient interpolation 

method of all, with the lowest errors (Tab.4) and with highest capability to accurately 

reproduce variability of the independent data.   

Due to the high variability, normally associated with hourly precipitation records and the 

high density of the network, it was clear that techniques such as trend induced prediction 

(Ordinary kriging, Universal Kriging, Simple Kriging, Disjunctive kriging) would provide 

good estimates, but not the best. Trend surfaces are always smooth surfaces which do not 

normally pass through the original data points but performs a best fit for the entire surface. 

In other words it provides an approximate direction of the intensity of rain rather than an 

accurate description of the spatial variability of rain. On the other hand, surfaces generated 

using exact methods try to pass through the points which, in the case of hourly, complex 

with high variability precipitation, is not suitable because of the rapid changes in gradient/ 

slope in the vicinity of the data points with high values, that creates rain cells . 

However, compared with the trend induced surfaces, RBFs is a more relaxed version of 

smooth fitting, that means a method that can fit a less smooth curves. Practically is a 

”shared’’ method taking into consideration smoothness - allowing the prediction of points 

above the maximum measured value and below the minimum measured value - and in the 

same time is an exact method. All this associated with a regular grid data -  with a not so 

high variability of the values of precipitation (the output of Cosmo LM is predicted ) - has 

allowed a good prediction with a small bias and a good accuracy of reproducing the 

variability of the independent data.   

From the polynomial methods the local method produced better prediction with smallest 

errors and a better accuracy of representing the variability, even if the underproduction of 

high and over prediction of the low is much more obvious.   
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