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SUMMARY Bayesian networks (BNs) have been increasingly applied to
support management and decision-making processes under conditions of
environmental variability and uncertainty, providing logical and holistic
reasoning in complex systems since they succinctly and effectively translate
causal assertions between variables into patterns of probabilistic
dependence. Through a theoretical assessment of the features and the
statistical rationale of BNs, and a review of specific applications to ecological
modelling, natural resource management, and climate change policy
issues, the present paper analyses the effectiveness of the BN model as a
synthesis framework, which would allow the user to manage the uncertainty
characterising the definition and implementation of climate change
adaptation policies. The review will let emerge the potentials of the model to
characterise, incorporate and communicate the uncertainty, with the aim to
provide an efficient support to an informed and transparent decision making
process. The possible drawbacks arising from the implementation of BNs
are also analysed, providing potential solutions to overcome them.
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1 Introduction 

Adaptation to climate change 

impacts is an important component of 

countries’ strategies to cope with the 

negative consequences of climate 

change. The policy focus is now gradually 

moving from mitigation only to mitigation 

and adaptation (Carraro and Sgobbi, 

2008), as highlighted also by many recent 

international and national initiatives, such 

as for example the European White 

Paper on climate change adaptation (EC, 

2009). The long-term analysis of 

adaptation strategies has traditionally 

emerged in the realm of long-term 

assessment of climate change impacts, in 

a continuous effort to overcome 

difficulties due to the large quantity of 

interacting factors and to the diversity of 

adaptation interventions.  

The design of effective climate 

change adaptation policies often faces 

situations where there is considerable 

uncertainty in understanding how the 

system works and how particular 

decisions and actions will influence it. The 

uncertainty surrounding the scientific 

understanding of climate change causes 

and effects is further increased by the 

complex interactions which link the 

environmental and the socio-economic 

systems. On the one hand, anthropogenic 

processes can increase the vulnerability 

of the system to the impacts of climate 

change. On the other hand, socio-

economic activities can be deeply 

affected by those impacts. Adaptation to 

climate change and uncertainty is clearly 

an issue for interdisciplinary research. 

Climate change represents one of 

the most multi-faceted manifestations of 

global change of our time and, in 

particular, climate change adaptation 

studies, which analyse the impacts and 

the possible responses, are among the 

most complicated assessments that the 

scientific community has ever faced. 

Dessei et al. (2007) introduce an edition 

of Global Environmental Change 

dedicated to uncertainty and climate 

change, with an editorial which explains 

that uncertainty is pervasive in the climate 

change policy debate. The opinions range 

from the position of Patrinos and Bamzai 

(2005), who claim the need of robust 

science favouring more scientific 

research over policy actions, to the one of 

Yohe et al. (2004), who argue that 

uncertainty provides a reason to take 

specific policy action on the near term. 

Between these two positions there are a 

range of views about the implications of 

uncertainties for different types of policy 

responses, ranging from mitigation to 

adaptation (Congressional Budget Office, 

2005; Stern, 2006).  

The main goal of an analysis of 

adaptation to climate change and 



 2 

uncertainty should therefore look at the 

formulation of optimal policies under 

uncertainty. The important issue is to 

understand how such uncertainties might 

affect decisions about policy strategies, 

which implies choices concerning the 

timing of interventions, the characteristics 

of adaptation measures at the local level, 

but also the coordinated effort at the 

national and global level. Responses to 

reduce climate-related risks to 

environmental and human systems need 

to be part of an integrated management 

activity, which should aim at reducing the 

uncertainty of the issue through the 

application of specific tools and the active 

involvement of experts, stakeholders and 

public authorities, and should finally 

support informed decision making 

processes. 

Climate change adaptation studies 

are characterised by uncertainties about 

the value of empirical quantities, and also 

about models’ structural forms, which 

complicate the assessment of physical 

impacts and damages in future climate 

scenarios, and indirectly affect the 

uncertainty in determining the costs and 

benefits of adaptation policies. This rises 

new challenges for the way individuals, 

organisations and societies make 

decisions, and makes it difficult to design 

effective, equitable and efficient policies 

to adapt to the impacts of climate change. 

When dealing with climate change 

policy issues, the uncertainties 

characterising the scientific 

understanding of the processes and the 

consequences on the environmental and 

the socio-economic systems can be 

translated into a cascade of four 

categories of uncertainties (Peterson, 

2006): uncertainty about the path of 

emissions of greenhouse gases; 

uncertainty about the future climate; 

uncertainty about the impacts of climate 

change; uncertainty about optimal 

policies (see Figure 1). 

Uncertainty
about the 

emission paths

Uncertainty
about future 

climate

Uncertainty about
impacts on 

environment and 
socio-economic

systems

Uncertainty about
optimal policies
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Figure 1: Representation of the four categories of uncertainty in climate change policy studies 

(source: adapted from Peterson, 2006). 
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These categories of uncertainty 

are both epistemic and aleatory. 

Epistemic or parametric uncertainty 

depends on limited information and 

imperfect knowledge, and can be reduced 

with further research, while stochastic or 

aleatory uncertainty is due to inherent 

variability and randomness in a system of 

phenomena that cannot be described 

deterministically, and is therefore 

irreducible (Pollino and Hart, 2007).  

Several authors highlight the 

importance of assessing the uncertainty 

in climate change policy studies (see for 

example IPCC, 2005, Stern, 2006; 

Congressional Budget Office, 2005). In 

particular, Morgan (2008) suggests to 

apply a comprehensive approach based 

on three actions: characterising the 

uncertainty, incorporating it into the 

analysis, and communicating it to the 

policy makers. Many methodologies and 

tools suitable for dealing with the above 

three actions have been developed and 

reported in the scientific literature, but 

most of the existing studies focus only on 

one of the processes, failing to provide a 

comprehensive and transparent 

methodological framework for the 

management of uncertainty in decision-

making processes. 

 

Characterise Incorporate Communicate

Use of probabilities to
quantitatively
characterise
uncertainty:

• Frequentist approach

• Bayesian (Subjectivist) 
interpretation

Incorporate uncertainty
into the analysis of 
complex issues:

• Transparent and 
comprehensive policy
analyses

• Interdisciplinary
approaches

Incorporate uncertainty
into the models:

• Sensitivity analysis

• Uncertainty
propagation

• Learning

Informed and 
transparent decision
making process:

• Quali-quantitative
instruments from
decision analysis
(Cognitive maps; 
Decision trees; 
Influence diagrams; 
Bayesian networks..)

• Interfaces and 
graphical structures

 
Figure 2: Synthesis of the main approaches applied to characterise, incorporate and communicate 

the uncertainty in climate change policy. 
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Probability is often considered as 

the best-known and most widely used 

formalism for quantitatively characterizing 

uncertainty (Morgan and Henrion, 1990), 

and the frequentist approach is usually 

applied, which is defined as objectivist 

since it assumes that probability is an 

objective property of theoretically infinite 

sequences of trials rather than of a single 

event. Since the frequentist approach 

deals with processes that are or can be 

imagined as repetitive in nature, it is often 

impractical for most real world decision 

problems. In contrast, the subjectivist or 

Bayesian interpretation considers the 

probability of an event as the degree of 

belief that a person has that an event will 

occur, given the relevant information 

known to that person. As a consequence, 

the probability is a function of the state of 

information, and not only of the event. 

Bayesian networks (BNs) are a new 

generation of probabilistic models, which 

apply the principles of the Bayesian 

philosophy, and are capable of modelling 

real-world decision problem using 

theoretically sound methods of probability 

theory and decision theory.  

Three broadly applied approaches 

are generally used to incorporate the 

uncertainty into models: sequential 

learning, sensitivity analysis and 

uncertainty propagation. Analyses of 

learning can inform research priorities by 

recognising which uncertainties might be 

reduced to yield the largest benefits to 

today’s decisions, allowing to compare an 

“act-then-learn” with a “learn-then-act” 

strategy. However, most existing models 

use a deterministic framework, and do not 

consider the uncertainty of the 

phenomena. The Bayesian probabilistic 

approach allows the user to consider 

decision processes as a sequence of 

choices in time, and not just as a “one-

shot” game. Therefore it allows the 

implementation of an “adaptive” 

management approach, which is flexible 

enough to change as a result of new 

information about the effects of specific 

interventions.  

The uncertainty in model’s 

parameters and structure is traditionally 

assessed by applying sensitivity or 

uncertainty analyses. A typical approach 

is Monte Carlo analysis (MCA), which 

considers random sampling of probability 

distribution functions as model inputs to 

produce hundreds or thousands of 

possible outcomes. The results provide 

probabilities of different outcomes 

occurring. MCA is not to be set against 

the use of BN models. It could instead be 

a complementary approach, which might 

be included in an application of a BN to 
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assess the stability of the outputs to 

variations in the nodes’ CPTs.  

Besides quantifying and 

incorporating uncertainties, the issue 

remains of how to communicate such 

uncertainty to decision and policy 

analysts. Decision analysis can be 

defined as a formal quantitative technique 

for identifying the best choices from a 

range of alternatives (Toth, 2001) and to 

explicit the trade-offs between adaptation 

alternatives, in order to guide an informed 

and transparent decision making process 

under uncertainty. Qualitative and 

quantitative decision tools can be 

combined into a single decision support 

system, which should be able to assess a 

decision problem considering its different 

parts: the qualitative structure of the 

problem, the available decision 

alternatives, the expected utility of 

choosing any of them, the importance of 

various sources of uncertainty, the value 

of reducing this uncertainty, etc. BNs can 

be applied as quali-quantitative 

instruments, whose user-friendly 

interfaces and graphical structures help 

the formalization of the system, through 

the engagement of experts or 

stakeholders in the decision process. 

The objective of the present paper 

is to increase the understanding, 

awareness and acceptance of the climate 

change research community on the 

potentials of BNs as probabilistic 

graphical models which can support more 

informed and transparent decisions 

concerning climate change adaptation 

policies. The paper illustrates how BNs 

can be applied to characterise the 

uncertainty of the issue using subjective 

probabilities obtained both from data and 

from expert judgments, to incorporate it 

into the model through the Bayesian 

updating process, and to communicate it 

to the stakeholders and decision-makers 

through the graphical interface. 

The next section of the paper 

introduces to the rationale behind the 

structure and features of the BN model. In 

the third section we present a review of 

selected applications of BNs to ecological 

modelling and natural resource 

management, which opened the way to 

the use of BNs in climate change policy 

analysis. Examples of those studies are 

reviewed in the fourth section. Section 

five identifies the many potentials of BNs 

in addressing complex issues such as 

climate change adaptation policy, 

together with the possible drawbacks 

arising from the review, and the possible 

solutions to overcome them. Section 6 

concludes the article and synthesises the 

main findings. 
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2 Bayesian networks 

Bayesian networks (BNs) are 

probabilistic models represented in a 

graphical structure for reasoning under 

uncertainty. The potential of the BN 

instrument lies in its dual structure. The 

graphical part illustrates and 

communicates, through a directed acyclic 

graph, the interactions among the set of 

variables, and mimics the causal 

structure of the modelled system. In 

addiction, BNs represent the quantitative 

strength of the connections between 

variables, allowing probabilistic believes 

about them to be updated automatically 

as new information became available, by 

applying the principles of Bayes’ theorem. 

According to the Bayesian philosophy, a 

probability of an event is the degree of 

belief that a person has that an event will 

occur, given the relevant information 

known to that person, therefore it is a 

function of the state of information, and 

not only of the event. 

The graphical structure of BNs is 

composed of two elements (Cain, 2001): 

[1] a set of nodes representing system 

variables. Each node has a finite set of 

mutually exclusive and exhaustive states 

of the variable (its “state space”). The 

states or conditions of the variables can 

be categorical, continuous or discrete and 

variables must take one state value at a 

time; [2] a set of links representing causal 

relationships between nodes. The 

structure or typology of the network 

should capture qualitative and 

quantitative relationships between 

variables. Two nodes should be 

connected directly if one affects or 

causes the other, with the arc indicating 

the direction of the effect. If there is an 

arc from one node to another the former 

is called parent and the latter child node. 

BNs graphical structure helps 

scientists and decision makers to build a 

realistic representation of the world in the 

form of a simple conceptual model. All the 

information should be represented at the 

appropriate level of detail using the right 

spatial and time scale. They are 

expressed in the network through the 

structure, the names of nodes and the 

names of states. 

Figure 3 provides an example of 

BN applied to a case study assessing 

some specific impacts of sea level rise. 

Modelling choices have to be made to 

directly link dependent variables, and to 

characterise each node using mutually 

exclusive and exhaustive values.
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Figure 3 – Bayesian decision network considering an  adaptation strategy (“Build dams on the 
coast”) as decision node, and the economic value of  aquaculture and fishery as value nodes. 

 

The network depicted in Figure 3 is 

a Bayesian decision network (BDN), 

which contains “chance” (or sometimes 

“deterministic”) nodes, but also “decision” 

nodes, which represent the decision 

being made at a particular point in time, 

and “utility” nodes, which explicit the 

value function measuring the desirability 

of the outcomes of the decision process. 

Decision networks combine 

probabilistic reasoning with utilities, 

allowing to make decisions on a number 

of alternative actions, that maximize the 

expected utility. The expected utility is 

also known as the probability-weighted 

average utility over every possible 

outcome of a particular action. 

The quantitative potential of BN 

models is introduced by a set of 

conditional probabilities (Conditional 

Probability Tables, CPTs) underling each 

node, which represent the belief that a 

node will be in a particular state given the 

states of those nodes which affect it 

directly (“parent” nodes). The CPTs 

contain entries for every possible 

combination of the states of the parent 

nodes and express how the relationships 

between the nodes operate (see Table 1). 
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State of natural habitat
Water salinity Low Medium High Low Medium High

Good 0.8 0.5 0.4 0.5 0.3 0.3
Bad 0.2 0.5 0.6 0.5 0.7 0.8

Good Bad

State of fish 
population  

Table 1: Conditional probability table for the node  “State of Fish Population” included in the BN of 
figure 3. 

 

The probability representing the 

knowledge of the subject before the 

research is conducted is called “prior”, 

and indicates the likelihood that an input 

parameter will be in a particular state. 

When new data or information became 

available, the prior probability updates 

and incorporates the evidence into a 

posterior probability. Evidence which has 

uncertainty associated with it can be 

considered in the updating algorithm in 

terms of “virtual” or “likelihood” evidence. 

The new outcome represents the 

probability that a variable will be in a 

particular state, given the input evidence, 

the conditional probabilities, and the rules 

governing how the probabilities combine.  

In BNs, therefore, each link that 

indicates a dependence represents a 

conditional probability distribution, that is 

a description of the “likelihood of each 

value of the down-arrow node, conditional 

on every possible combination of values 

of the parents nodes” (Borsuk et al., 

2004). A node with no incoming arrows 

(root node) can be described with a 

marginal or unconditional probability 

distribution.  

BNs are built considering the 

conditional independence between 

variables. Two events are probabilistically 

independent when new information on 

one node leaves the probability of the 

other unchanged. It is possible to define 

the conditional independence among 

variables directly from the graphical 

structure of a BN. According to the 

Markov property, missing arcs, from a 

node to its successors in the sequence, 

signify conditional independence 

assumptions.  

Numerically, BNs encode a joint 

probability distribution among variables, 

i.e. the probability that two events occur 

both: the occurrence of one event may 

change the probability of the other. Each 

change in the state of a node propagates 

along the network, through the updating 

of the joint probability distributions, with 

the iterative application of Bayes’ 

theorem. Changes in any node arise from 

the combined effect of changes in all the 

nodes linked to it, in accordance with the 

relationships expressed by the CPTs 

(Cain, 2001). In this way, the joint 

probability distribution for the entire 
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network can be specified, and this 

relationship can be captured 

mathematically using the Chain Rule, 

whose equation states that the joint 

probability distribution for node X is equal 

to the product of the probability of each 

component Xi of X given the parents of 

Xi. 

 

3 Applications of BNs to ecological 

modelling and natural resources 

management 

Ecological models face a serious 

challenge when they need to integrate 

ecosystem patterns at a variety of 

special, functional or temporal scales, into 

coherent predictive models (Levin, 1992). 

In order to overcome this complexity and 

to be able to assess how uncertainties in 

each component of the model translate to 

uncertainty in the final predictions 

(Reckhow, 1994), Bayesian networks 

have been widely used in ecology and in 

the management of natural resources. 

BNs allow the user to easily update 

analyses in order to reflect evolving 

scientific knowledge and also policy 

needs (Walters, 1986). In recent years, 

BNs have been generally applied in 

ecological modelling to frame species-

habitat relationships and population 

viability of terrestrial and aquatic 

vertebrates (Marcot, 2007, quoted in 

McCann et al., 2006).  

A brief review of a selected set of 

papers dealing with BN applications in the 

field of ecology and natural resources 

management is provided below, to frame 

and introduce the potentials of such 

techniques in the much less explored field 

of climate change adaptation as 

discussed in the following sections. 

Among the several applications of 

BNs to ecological modelling, one 

reference example could be found in 

Borsuk et al (2004), who propose a 

Bayesian network integrating several 

models of the various processes involved 

in eutrophication in the Neuse River 

estuary, North Carolina. The graphical 

form of the model explicitly represents 

cause-effect assumptions between 

system variables through conditional 

relationships, quantified using 

approaches suitable for the kind and 

scale of information available. The BN is 

developed as a synthesis model which 

combines diverse methods applied to the 

prediction of policy-relevant ecosystem 

attributes, including: process-based 

models statistically fit to long-term 

monitoring data, Bayesian hierarchical 

modelling of cross-system data gathered 

from the literature, multivariate regression 

modelling of mesocosm experiments, and 

judgements elicited from scientific 



 10

experts. In this way, the BN model 

provides probabilistic predictions of 

ecosystem response to alternative 

nutrient management strategies. 

BNs are applied to generate a 

holistic understanding of a complex 

ecological system under analysis also by 

Hamilton et al. (2005), who develop a BN 

to better understand the growth process 

of a marine cyanobacterium in Moreton 

Bay (Queensland, Australia). As in 

Borsuk et al. (2004), the network is 

capable of synthesis, prediction and 

uncertainty analyses. In this case the 

model is defined through an iterative 

process, starting from the engagement of 

scientists and stakeholders, which brings 

to the creation of a BN framework for 

integrating the available knowledge on 

the Lyngbya sp. bacterium. The BN 

provides an integrated model for 

understanding the bacterium dynamics in 

the Bay, using information from different 

sources, included expert judgments. A 

parallel process is carried out, focussing 

on management policies and ground 

actions at the state and local government 

level. A broader BN is finally created to 

integrate the management model into the 

scientific one, in order to predict the 

potential impact of management 

strategies and to develop scenarios 

relevant to future planning, benefiting 

from BN ability to identify areas of most 

influence, least information and greater 

sensitivity. 

A similar approach for constructing 

and parametrising a BN model is followed 

by Marcot et al. (2001), whose purpose is 

to discover and then model the causal 

relationships between biotic factors, 

habitat conditions, and management for 

some vertebrate and invertebrate species 

in the Columbia River Basin (USA). Two 

different BN models are built, for aquatic 

and terrestrial wildlife, by combining the 

existing literature with expert judgments. 

The networks are then transformed into 

Bayesian decision networks (BDN), by 

adding utility nodes and decision nodes.  

Decision making is often a driving 

force behind environmental modelling. 

BDNs have been widely applied to issues 

concerning the management of natural 

resources, by exploiting their potential to 

make predictions on the possible effects 

of different strategies and scenarios, and 

their capacity to assess the influence of 

uncertainty in understanding and 

variability in ecosystem response on 

costs and benefits assigned to model 

outputs, helping the competent managers 

to identify the optimal course of action. 

Borsuk et al. (2002) developed a 

Bayesian network to discern the relative 

causal importance of different hypotheses 

for the decline of fish catch in 

Switzerland. The network allowed the 
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complex causal chain linking 

anthropogenic causes to ecological 

effects to be factored into an articulated 

sequence of conditional relationships. 

Each relationship was then quantified 

independently, using information from 

experimental investigation, field data, 

process-based models and elicited expert 

opinions. The BN was used to assess the 

historical importance of anthropogenic 

changes, but also to make previsions on 

the effects of possible management 

actions. 

BNs have captured the interest of 

many researchers in water resource 

planning and management. Water 

systems comprise many different 

components (reservoir, catchment, fish, 

farms, etc.), which may differ also in 

nature (physical, social, economic, 

ecological, etc.). Therefore the integrated 

management of water resources (IWRM) 

deals with complex problems involving 

technological, environmental, economical 

and social aspects, and is characterized 

by a high degree of uncertainty. A model 

which aims at describing the whole 

system should integrate the models of the 

different components, without being too 

mathematically abstruse, or loosing 

information, accuracy or transparency. 

Cain (2001) proposes a document 

providing detailed guidelines for the 

implementation of BNs in IWRM. Using 

an hypothetical case study dealing with 

the management of resources in the Poya 

Ganga River (Sri Lanka), the author 

demonstrates the potential of the tool to 

synthesise data and information of 

different origins, with the involvement of 

scientific experts, local stakeholders and 

decision makers, with the aim to define 

effective management strategies.  

Bromley et al. (2003), illustrate 

some of the advantages and problems 

encountered in the application of BNs as 

an aid to integrated water resource 

planning in the Lodon Catchment, South 

East England. The BN are developed as 

part of the MERIT project, and other BNs 

are then implemented for other catchment 

areas in Italy, Denmark and Spain. BNs 

are built up with the involvement of 

stakeholders groups, and link together 

different types of data, also coming from 

GIS estimates, in a way that allows 

integrated analysis.  
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   Model purpose Input data type 
 

  

Integration 
of 

variables 
from 

different 
domains 

Support 
to 

decision 
processes  

Bayesian 
updating 

with 
available 
evidence  

Prediction 
with 

future 
scenarios 

Use of 
expert 

judgments  

Engagement 
of 

stakeholders 

Qualitative 
data from 
models 

Borsuk et al. 
(2004) X X  X X   

Hamilton et al. 
(2005) X   X X X  Ecological 

modelling 
Marcot et al. 

(2001) X X X  X   

Borsuk et al. 
(2002) X X X X X  X 

Cain (2001) X X X X  X X NRM/IWRM 
Bromley et al. 

(2003) X X X X  X X 

Musango and 
Peter (2007) X X X X  X X 

Varis and Kuikka 
(1997) X  X X X  X 

Oberholster et al 
(2005) X  X X   X 

Cuddy et al. 
(2007) X X  X  X X 

Koiusavalo et al. 
(2005) X X X X X  X 

Hall et al. (2005) X X X X   X 

F
ie

ld
 o

f a
pp

lic
at

io
n 

Climate 
change 

Gu et al. (1996) X   X   X 
Table 2: Characteristics and purposes of the select ed studies 
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4 Applications of BN to climate 

change policy issues 

Similarly to the consolidated field 

of natural resources management, the 

assessment of climate change impacts 

and the evaluation of mitigation and 

adaptation strategies typically requires 

the consideration of a number of 

interacting processes operating at 

multiple spatial and temporal scales. But 

models developed to appropriately 

represent each of these processes are 

difficult to combine into a single predictive 

model.  

As discussed in the previous 

section, BNs can provide a possible 

solution to this problem, since they 

represent cause-and-effect relationships 

between system variables that may not 

be clarified under other approaches, and 

allow the complex causal chain linking 

management actions to environmental or 

socio-economic consequences to be 

formally structured into an articulated 

sequence of conditional relationships. 

Moreover, the selected examples of BN 

models applied to ecology and NRM 

provided sound frameworks within which 

uncertainty could be represented and 

analysed pragmatically, and their 

versatility in collecting and integrating 

disparate knowledge from all the areas of 

interest, made them well suited for 

applications in the analysis of climate 

change policy.  Below, successful 

examples of applications of BNs in the 

field of climate change policy are briefly 

reported, to support the identification of 

potentials and limits presented in 

Sections 5 and 6. 

Gu et al (1996) apply the BN 

approach to deal with the uncertain 

information associated with climate 

prediction, in order to examine the risk or 

benefits to crop production in Scotland. 

The BN relates a model describing faba 

bean growth with a weather generator 

model, and it is able to answer queries on 

faba bean production under various 

climate predictions. The study also 

discusses the advantages deriving from 

the combination of belief network 

techniques with Geographical Information 

Systems (GIS) as a means of scaling 

from local to regional predictions for crop 

production. 

Hobbs (1997) analyses the 

advantages of a Bayesian approach for 

assessing uncertainties in climate 

change, in terms of basing inference and 

decisions on a coherent and normatively 

theoretical framework. He summarises 

the application of Bayesian analysis to 

detection of climate change, estimation of 

model parameters, and wetland 

management under climatic uncertainty. 

He compares the Bayesian methodology 

with alternative paradigms for analysing 
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uncertainty, such as fuzzy sets and 

Dempster-Shafer reasoning, and 

concludes that Bayesian analysis is a 

practical and theoretically sound tool for 

making inferences about climate change 

and for making decisions based on those 

inferences, and it is relatively easy to 

understand. 

With the aim of combining data 

from different sources, including 

information elicited from the experts, 

Varis and Kuikka (1997) develop a 

Bayesian impact matrix approach (BeNe-

EIA, an acronym from Belief Network 

approach to Environmental Impact 

Assessment), to elicit expert judgment 

and assess the impacts of climate 

change. The approach combines 

information from two assessment 

matrices compiled by the experts, that 

contain the probabilities of change in the 

attributes included in the analysis and the 

strengths of interdependencies between 

the attributes. One or more experts are 

used to define a Bayesian prior 

distribution for each of the selected 

attributes, and the inter-attributes links, of 

the system under study. Posterior 

probabilities are calculated interactively, 

indicating consistency of the assessment 

and allowing iterative analysis of the 

system. Therefore the approach uses 

Bayesian network techniques to calculate 

posterior probability distributions for each 

of the attributes. A network model is 

produced, which is aimed at aiding 

quantification and managing the 

inconsistencies in the elicitation process. 

Also Hall at al (2004) develop a 

Bayesian decision network as a formal 

mechanism for structuring large quantities 

of evidence from a variety of sources, and 

respond to policy questions about the 

potential impacts of climate change. The 

research was commissioned by the UK 

government to establish the extent to 

which the unusually damaging floods of 

2000 were a manifestation of hydrological 

climate change. Influence Diagrams are 

populated with probabilistic measures of 

belief to provide a graphical 

representation of uncertainty, which helps 

to synthesize complex and contentious 

arguments into a relatively simple, yet 

evidence-based, graphical output. 

Oberholster et al. (2005) combine 

historical data with new evidence, 

implementing a BN to predict the 

concentration of sub-surface chlorophyll, 

as an indicator of plankton production. 

Estimates of plankton primary production 

are essential to understand the 

functioning of the marine ecosystem and 

the possible impacts of climate change on 

the marine food web. Bayesian Networks 

are comprised of two parts: a learning 

engine and an inference engine. The 

learning engine finds patterns in historical 
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data and the inference engine takes 

these patterns as input and predicts likely 

trends. Topic maps are used to represent 

and store the Bayesian network structure 

and beliefs. The topic maps serve as a 

mechanism for passing information 

between the Bayesian network 

component of the system and the 

interface. BNs are applied to combine 

environmental and satellite data with an 

existing archive of 10 years worth of sub-

surface ship readings, to provide 

predictions of chlorophyll profile and 

estimate plankton primary production of a 

given point in the ocean, when 

environmental or satellite data are made 

available, including climate change 

projections to assess potential impacts on 

the marine ecosystem. 

Koivusalo et al. (2005) develop a 

Bayesian network tool inside a Decision 

Support System (DSS), as part of the 

CLIME project, which assesses the 

effects of climate change on lake 

dynamics. The aim is to integrate experts’ 

knowledge and simulation model results 

in a form of a decision support system 

(CLIME-DSS) that illustrates and 

summarizes the main results of the 

project to interest groups outside the 

research community. The DSS is based 

on a causal BN, that summarizes the 

main relationships between climate 

variables and lake characteristics. The 

model is built using data elicited from the 

experts together with the results of an 

environmental simulation model focusing 

on watershed hydrology and Dissolved 

Organic Carbon (DOC). The methodology 

is applied to a case study which assesses 

the impacts of climate change on the 

concentrations of DOC in catchment run-

off. An expert survey is firstly conducted 

to determine the variables characterizing 

DOC processes, and to identify the 

causal dependencies between the 

variables in comparison with the variables 

included in the DOC model. 

Subsequently, the Bayesian network is 

parameterized, characterizing the 

response of DOC concentrations to 

changes in climate. Finally, it is explored 

how the Bayesian network can be applied 

to regionalize the model results from one 

location in Europe to another. 

Musango and Peter (2007) 

demonstrate the usefulness of employing 

Bayesian networks to integrate in a single 

framework environmental, social and 

economic variables that may be impacted 

by climate change in the South African 

agricultural sector. Various climate 

change scenarios are considered with 

decreasing rainfall and increasing 

evapotranspiration. The effects of 

damming and population increase are 

also included, and the net water-usage 

resulting from various agricultural 
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strategies is compared to projected 

decreases in water availability due to 

climate change. The model compares the 

potential total value added of the activities 

with and without the potential impacts of 

climate change. The ability to present the 

sensitivities between key variables, for 

which varying degrees of data scarcity 

and uncertainty occur, provides 

agricultural sector researchers with a 

facilitation tool that helps to formulate 

climate change mitigation and adaptation 

strategies.  

At the Integrated Catchment 

Assessment and Management (iCAM) 

Centre of the Australian National 

University a research project is in 

progress, which develops a BN inside a 

DSS to study the impacts of climate 

change on natural resource management 

(NRM) in the Central West catchment 

area (Cuddy et al., 2007). The DSS will 

help to assess NRM options under 

different climate change scenarios, and 

aid decision making to lessen impacts on 

catchment assets. The research started 

with a consultation of local and regional 

stakeholders, to conceptualize the 

system's variables and interactions. The 

system framework includes: climate 

change scenarios applicable for the 

region, important system components 

and assets as identified by stakeholders, 

catchment management goals identified 

by the Central West Catchment 

Management Authority and the 

stakeholders. The framework will be then 

converted into a Bayesian Decision 

Network, in order to allow for a complex 

and broad range of impacts to be 

explored using a simple interface.  

The literature survey presented 

above clearly shows that the applications 

of BNs to climate change have a lot in 

common with the much broader field of 

applications to environmental issues. First 

of all they share the need to structure 

evidences coming from a variety of 

sources in a single model. A second 

aspect is the possibility to make 

projections on the effects of alternative 

management options on the system 

under analysis, and to carry out an 

adaptive management approach by 

updating the model with available 

evidence. Another important issue is the 

incorporation of uncertainty into the 

analysis (a pervasive problem in climate 

change research), for which Bayesian 

reasoning is specifically suited and 

increasingly used, with the support also 

from the Intergovernmental Panel on 

Climate Change (IPCC), who has given 

increasing attention to the Bayesian 

approach in particular for the 

management and reporting of 

uncertainties since the Third Assessment 

Report (IPCC, 2001). Lastly, a peculiar 
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feature of Bayesian statistical models is 

their ability to combine information from a 

multi-model ensemble. The section that 

follows will attempt to provide a 

comprehensive assessment of the 

potentials of BN’s in climate change 

research, with specific emphasis on 

supporting the development of adaptation 

policies. 

5 Potentials and limits of BNs for 

climate change adaptation policies 

Drawing on the reviewed 

applications of BNs in environmental 

management and more specifically in 

climate change research, the present 

section firstly describes the benefits that 

can be provided by the implementation of 

such techniques in the policy making 

process, and then discuss the possible 

drawbacks, together with the solutions to 

overcome them.  

The potentials arising from the 

applications of BNs can be easily brought 

back to the three actions, exposed in the 

introduction, that lead to a comprehensive 

and effective process of uncertainty 

management in the assessment of 

climate change adaptation policy: 

characterising, incorporating and 

communicating the uncertainty (Table 3).

 

Characterising Incorporating Communicating

Handling 
aleatory/epistemic 

uncertainty through a 
probabilistic model

Adaptive management 
through probability 

propagation and belief 
updating

Supporting policy decision 
processes through 
Bayesian decision 

networks

Handling epistemic 
uncertainty through the 

integration of expert 
judgments and data 

from different sources

Examining alternative 
management scenarios

Improving communication 
among different actors 
through the graphical 

interface

Management of uncertainty in BNs

 
Table 3: Synthesis of the main advantages provided by the application of BNs in climate change 
policy studies  

 

BNs use probability as a measure 

of uncertainty, in order to estimate risks 

and uncertainties better than deterministic 

models. The probabilistic representation 

of the interactions among variables 

prevents overconfidence in the strength 

and effectiveness of the responses 

obtained by applying specific 

interventions. As new evidence becomes 

available, and it propagates updating the 

Bayesian networks’ CPTs, the uncertainty 

diminishes and the knowledge of the true 

values of the variables improves. BNs 

therefore provide a “robust and 
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mathematically coherent framework” for 

modelling uncertain and complex 

domains (Uusitalo, 2007), since they 

make it possible to treat uncertainty 

explicitly.  

Most of the studies considered in 

the review have to deal with incomplete 

evidence leading to beliefs that fall short 

of knowledge, with fallible conclusions 

and the need to recover from error. BNs 

are therefore applied as sound 

frameworks within which uncertainty can 

be represented and analysed 

pragmatically.  

As expressed in the introductory 

section, climate change problems are 

often complex and multifaceted, and are 

usually addressed with a reductionist 

approach, which focuses on small areas 

of the problem. Bayesian networks 

provide a rational method for integrating 

the best information from a variety of 

fields and sources. Since the work of 

Varis and Kuikka (1997) BNs have been 

used to overcome uncertainty and 

fragmentation of existing studies, through 

the provision of integrated analytical 

approaches. Musango and Peter (2007), 

for example, demonstrate how BNs may 

be used to derive key thresholds and 

sensitivities within the uncertain 

projections of climate change impacts on 

agriculture, to test the potential 

adaptation strategies, while highlighting 

the serious research deficiencies.  

A specific advantage emerging 

from the examined literature is that BNs 

do not necessarily need a wide sample 

size of data to perform an accurate 

analysis, while incorporating in a 

mathematically coherent way data of 

different accuracy and belonging to 

different sources (Uusitalo, 2007). Even 

more importantly, BNs provide a solution 

for the integration of quantitative 

information, obtained by models and 

empirical data, with qualitative 

knowledge, provided by experts and 

stakeholders. BNs thus allow users to 

deal with a range of different domains 

(environmental, social, political, 

economic, etc.), linked together through 

probabilistic dependencies, including also 

those variables for which no quantitative 

data and/or models exist yet, while expert 

opinion are available and could be used 

to – temporarily – fill existing gaps for 

supporting urgent decisions and policy 

developments.  

As it should be evident from the 

above analysis, the main strength of BNs 

probably lies in their flexible structure, 

whose variables can represent any 

physical, social, economic or institutional 

factor, either tangible or intangible, and 

can include information from different 

sources, mainly expert knowledge and 
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model or empirical data, in order to 

capture ideas effectively. Conditional 

Probability Tables underlying each node 

of the network, are based upon data-

based and/or knowledge-based 

approaches.  

As pointed out by Hamilton et al. 

(2005), the process of BN development in 

itself facilitates: a deeper understanding 

of variables and interactions; a greater 

maturity in reasoning about the problem 

during successive iterations of the model; 

the awareness of the role of individual 

scientists’ research in the larger picture; 

and a recognition of the need to 

coordinate data and models arising from 

the different research projects.  

BNs show specific opportunities 

also when applied to condition upon new 

information. The process of conditioning, 

also defined as probability propagation or 

belief updating, is carried out through a 

“flow of information” among the variables 

of the network (Korb and Nicholson, 

2004). In those cases, BNs’ priors are 

updated with data, to obtain a synthesis 

of old knowledge and new information, 

which can be further used as a prior in a 

new analysis. This flexible mechanism 

allows to perform an adaptive 

management approach, which changes 

as a result of new information about the 

effects of initial interventions, and which 

is at the basis of the concept of climate 

change adaptation. The updating process 

thus provides an explicit, structured and 

systematic approach that allows learning 

from  experience and facilitates more 

robust and transparent planning and 

management processes. In particular, 

Bayesian decision networks (BDNs) 

represent a useful tool to be applied 

together with decision analytic tools to aid 

management choices. Indeed, while BNs 

allow the user to quantify uncertain 

interactions among random variables, in 

order to determine the impact of 

observations, BDNs support exploration 

of decision makers’ options and 

preferences, and help to determine the 

preferred solutions.  

In a decision/policy making 

context, the capability of BNs to estimate 

the possible impact of uncertainty on the 

options considered is of great relevance. 

BNs can thus provide insight on the 

chance that different interventions may 

have a particular expected effect, and 

then investigate the consequences of 

such uncertainty, balancing the 

desirability of the specific outcomes 

against the chance to obtain them. 

Moreover, the consequences of different 

management choices can be analyzed 

considering also the risk of highly 

undesirable outcomes.  

Last but not least is twofold 

potential of BNs graphical structure, 
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mentioned in the various studies 

examined. On the one hand, the diagram 

conceptualizing the system under 

analysis helps to explicitly model causal 

relationships and hence can be used to 

gain a deeper understanding about the 

problem domain. On the other, the 

communication of information to decision 

makers and the active participation of 

people without technical abilities 

improves with the use of the BN’s 

graphical structure, representing all the 

variables and relationships of the system. 

Besides highlighting the several 

potentials of BNs, the analysis of the 

theoretical background and the reviewed 

applications of the models allows the 

identification of restrictions and pitfalls 

arising from their implementation, 

summarised in Table 4, all together with 

possible solutions. 

Represent complex 
problems

Acyclic graphs
Represent 

continuous variables
Integrate expert 

judgments

Computationally hard 
problems

High amount of 
information needed

Time consuming

Financial costs

Process of simplification 
of the BN

Compact and 
manageable BN

Use of sub-models

Techniques to handle 
complexity (e.g. MCMC; 
HBN; OOBN; IPT; DBN)

Risk of errors or biases 
in the estimates

Use of Dynamic 
Bayesian networks, 
with different time 

slices

Use of specific 
software packages and 

statistical languages

Use of structured 
methods for expert 

elicitation

Combination of expert 
judgments with hard 

science dataP
os

si
bl

e 
so

lu
tio

ns
Li

m
its

BN cannot 
incorporate feedback 

loops

Discretization 
processes: delicate 
and often subjective

 

Table 4: Synthesis of the identified limits of BNs and possible solutions 
 

Environmental issues, and even 

more those issues that include both the 

environmental and the socio-economic 

dimensions, are often assessed from a 

variety of narrow and specialist 

perspectives, making it difficult to 

simultaneously bear the best scientific 

information from distinct fields, including 

also the participation of multiple experts 

and/or stakeholders, and identifying 

management objectives. BNs can 

perform such a function, providing a 

rational method for the integration of data 

from different sources (Woolridge and 

Donne, 2003), and at the same time they 

allow the user to incorporate prior 

knowledge and posterior evidence in 

order to more accurately model a 

complex system, which may be difficult 

when using other techniques. However, 
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BNs are often considered not ideally 

suited to situations where the complexity 

must be represented in great detail or 

where cause-effect relationships are not 

enough to understand how the system 

works. Cain (2001) points out that the 

representation of uncertainty requires 

information on what that uncertainty might 

be, which increases the amount of 

information required to feed the model. 

Exact or even approximate 

inference in an arbitrary network is 

considered NP-Hard in time complexity 

(Heckerman and Wellman, 1995). This 

means that there is no known polynomial 

time algorithm that can provide the 

inference. Instead, exact inference 

requires time that is exponential in the 

number of variables. Networks with more 

than just few nodes quickly become 

intractable to use (Mead et al., 2006). 

In order to represent 

independencies explicitly and to optimally 

handle the causal structure of the model, 

also from the computational point of view, 

BNs should be compact. The amount of 

nodes, states and links need therefore to 

be limited, to obtain more manageable 

conditional probability tables (CPTs) and 

to facilitate the understanding of the 

model functioning to other people (e.g. 

stakeholders and decision makers).. 

Moreover, it usually takes a long time and 

significant costs to collect and collate the 

data. Both time and financial costs are 

related to the size and complexity of the 

BN created.  There exist several ways to 

make BNs more manageable. A complex 

BN can be for example divided in simpler 

sub-models, which are easier to compile 

and linked to each other. Some of the BN 

models proposed in the reviewed studies 

explicitly underwent a simplification 

process, such as for example the network 

developed by Borsuk et al. (2004), which 

was reduced from 35 nodes and 55 

arrows down to 14 nodes and 17 arrows. 

In the latest years, several 

techniques have been proposed to 

handle BNs complexity (Mead et al., 

2006), e.g. Markov chain Monte Carlo 

(MCMC) simulations, hierarchical (HBNs) 

and object oriented (OOBNs) Bayesian 

networks, interval probability theory (IPT), 

and dynamic Bayesian networks (DBN). 

MCMC techniques represent a Markov 

chain of possible states where each one 

is a unique configuration of the network, 

and estimates posterior probability 

distributions. By using approximate 

inference, networks with more than a few 

nodes become tractable. HBNs and 

OOBNs extend BNs to increase their 

ability to manage complex structure by 

allowing the nodes of the network to be 

instances of other networks, and 

therefore improving the efficiency that 

results from the additional structure 
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information. IPT expresses the 

uncertainty in the prediction when it 

separates the support for a proposition 

from support for the negation of the 

proposition, and in this way expresses 

ambiguity in probabilistic predictions or 

estimates. Finally, DBNs represent the 

change of the BN model over time 

connecting nodes in different time slices. 

BNs are acyclic directed graphs 

that cannot incorporate feedback loops: 

they do not allow to return to a node 

simply by following directed arcs. 

Relationships must represent either one-

way causal influences at a particular 

instant in time, or net influences on 

eventual steady-state conditions. This 

could represent an important limitation in 

climate change modelling. A solution 

could be the use of dynamic BNs, where 

temporal dynamics can be incorporated 

using different time slices. This approach 

would relax some of the feedback 

restrictions typical of the standard 

directed acyclic graphs used for BNs. 

However, dynamic BN could result very 

tedious and complex, considering the 

intra and inter-slice interactions and 

dependence among variables. Such a 

model requires significantly more 

information to quantify the time dynamics, 

and the level of uncertainty usually 

increases when looking further into the 

future. A robust analysis should therefore 

be limited to few time steps, taking into 

account that an insufficient consideration 

of dynamic aspects of system behaviour 

could provoke unexpected 

consequences, that are not adequately 

captured by the probabilistic predictions. 

BNs ability to consider continuous 

data often results limited. The usual 

solution is to discretize the variables, 

although the process could rise some 

difficulties. First of all, the discretization 

captures only the rough characteristics of 

the original distribution and we may loose 

statistical power if the relationship 

between the variables is, in fact, linear 

(Uusitalo, 2007). Discretization 

methodologies are often based on 

subjective knowledge and not on 

automatic approaches. However, it 

should be noticed that also the use of 

continuous probabilities risks to include a 

certain degree of subjectivity, for example 

if a specific shape of the distribution is 

externally imposed. Discretization 

involves delicate processes, since the 

number of intervals which are defined, 

and the division points, will make an 

important difference in the resulting 

model. While several BN software do not 

allow to deal with continuous variables, 

new methodologies and packages are 

being developed to take them explicitly 

into account. Most existing BN software 

packages make it possible to build and 
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implement BNs without technical 

knowledge about the belief updating 

algorithms and the programming 

languages. BN software products are 

experiencing a constant development and 

their features makes them easy to apply 

to different fields of knowledge. They are 

more and more diffused to support the 

research efforts in an ever-widening 

range of domains.  

 

BNs are a useful tool to integrate 

expert knowledge into the analysis and 

eventually combine it with model or 

empirical data. The use of expert 

judgment plays a particularly important 

role in environmental management. Most 

of the researches analysed in the review 

integrate empirical data and information 

from models with knowledge elicited from 

the experts (eg. Varis and Kuikka, 1997, 

Hamilton et al., 2005, etc.). However, the 

expert judgment elicitation process brings 

along several difficulties, mainly 

associated with collecting and structuring 

the information in a form that can be 

converted into probability distributions. 

The way in which expert judgment is 

introduced into a BN can lack 

transparency and rigor. As Morgan and 

Henrion (1990) point out, collection of 

quantitative knowledge from humans is 

prone to overconfidence, that may result 

in biased outcomes. Humans find it easier 

to assess qualitative than quantitative 

data. It seems cognitively difficult to think 

of conditional distributions with several 

conditioning factors. That is another 

reason to simplify the BNs’ structure by 

reducing the amount of parent nodes and 

states of the variables, and by omitting 

less important variables. BNs allow to 

decompose, according to the conditional 

independences, the whole problem to 

lower-dimension sub-models, which can 

be more easily fed and solved also with 

expert data. 

Uusitalo (2007) proposes an 

approach to organize elicitation into BNs. 

It is important to firstly decide whether to 

use expert knowledge both to define the 

model structure and the probability 

distributions, or to have instead a pre-

defined structure and fill in the CPTs with 

expert judgment. The first option would 

be more appropriate for the analysis of 

complex phenomena such as the global 

climate change, when it is advisable to 

ask the experts to create first the model 

structure according to their own beliefs, 

and then give estimates of the relevant 

probability distributions related to the 

model. In order to be more effective and 

robust, BNs shouldn’t rely only on data 

elicited from the experts, but should try to 

combine the qualitative structure, based 

on expert knowledge, with the 

quantitative probabilities obtained using 
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hard data. Finally, BNs can be 

malconstructed and should then be 

reviewed by an experienced BN expert 

for consistency. (Henriksen et al., 2006)  

6 Conclusive remarks 

The analysis of the literature of 

Bayesian network applications carried out 

throughout the paper, demonstrates that 

they may provide an innovative 

operational approach for assessing and 

incorporating probabilities, and therefore 

uncertainty, into analyses and decision 

makers’ choices. In particular, for what 

concerns climate change adaptation, BNs 

emerge as a flexible approach providing 

analysts and decision/policy makers with 

a tool to facilitate learning, and enhance 

analysis performances, thus improving 

adaptive management and decision 

making,. The review illustrated how the 

opportunities and advantages offered by 

the BN instrument are applied to different 

research contexts dealing with 

environmental and climate change 

issues, and demonstrated the capacity of 

the tool to characterise, incorporate and 

communicate the uncertainty in the 

assessment of adaptation policy options. 

It appears evident that such potentials of 

BNs, could facilitate the design of 

effective, equitable and efficient 

adaptation policies, focusing in particular 

on the choice between a precautionary 

action and a delayed intervention. 

The question of whether to act now 

or wait to learn more is central to the 

climate change adaptation debate. In that 

context the implementation of the BDN 

model may provide an innovative 

approach to move beyond the 

incorporation of uncertainty in climate 

change analysis and account for learning, 

through the acquisition of new information 

that leads to the reduction of uncertainty 

over time. Most of the analysed BN 

models, applied to environmental or 

climate change studies, provided a 

support for adaptive management, in an 

effort to structure an informed and 

transparent decision making process 

which was able to consider a sequence of 

choices in time, and not just a “one-shot” 

game. BNs were applied as sound 

frameworks within which uncertainty 

could be represented and analysed 

pragmatically, and were sometimes 

coupled with the development of Monte 

Carlo analyses,  to better assess the 

stability of the outputs to variations in the 

nodes’ CPTs. The BN tool could therefore 

guide the choice and implementation of 

adaptation policies, following a 

precautionary approach that overcomes 

the uncertainty of future projections and 

models’ estimates.  

Given the relevance of the issue of 

interfacing the scientific and the policy 

spheres within the same debate about 
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adaptation policies, BNs’ potential to 

integrate qualitative and quantitative 

information and to synthesize complex 

and contentious arguments into a 

relatively simple graphical output appears 

of greater relevance. A BN model can 

integrate the different components 

without being too mathematically 

abstruse, or loosing information, accuracy 

or transparency. Existing simulation 

models, which appropriately represent 

our level of understanding about the 

functioning of the climatic or socio-

economic systems, can be used as a 

basis for identifying and quantifying the 

variables and the set of relationships in a 

BN. However, BNs should not be seen as 

a suggested replacement for other 

models in current use, but rather as 

integrators of several forms of knowledge, 

whether expressed as a process-based 

description, a data-based relationship, or 

a quantification of expert judgment. At 

this regard, as in most of the reviewed 

studies dealing with the management of 

natural resources and climate change, 

BNs need to be coupled with specific and 

broader DSS approaches and tools, in 

which BNs can be considered as a 

facilitation tool which could help both 

researchers and policy-makers to assess 

the effects of climate change and respond 

to policy questions about adaptation 

strategies.  

The user-friendly graphical 

structure of the reviewed networks 

encourage the involvement of 

stakeholders and decision-makers in the 

implementation process, improving the 

communication between science and 

society, and the diffusion of information. 

The possibility to incorporate data elicited 

from the experts in climate change 

adaptation studies would favour the 

interchange and the comparison of 

available knowledge among different 

domains, and would therefore manage 

the intrinsic complexity of the issue.  

Despite the unquestionable 

strength of the instrument, still relatively 

few applications of BNs to climate change 

policy issues are available in the 

literature. While Bayesian reasoning and 

analysis are extensively applied to assess 

the uncertainty in climate change science, 

BNs are still poorly utilised as a decision 

support tool in the policy area.  

It may be expected that the 

growing development of new 

computational methods and techniques, 

the diffusion of user-friendly BN’s 

software, and the vast application of BNs 

to ecology and natural resource 

management issues, will improve BNs’ 

abilities and range of potential 

applications, but the limitations mentioned 

in the previous section should be carefully 

considered at least until when a new 
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generation of approaches and tools will 

become available, thus overcoming in 

particular the problem of managing the 

fast growing and often 

 unmanageable complexity of 

networks and the challenging 

management of feedback loops. 
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