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SUMMARY The chaotic nature of the atmospheric dynamics has stimulated
the inclusions of methods and ideas derived from statistical dynamics. For
instance, weather predictions have recently been based on the development
of extensive ensemble systems that are designed to sample the phase
space around the initial condition. Such an approach has been shown to
improve substantially the usefulness of the forecasts allowing forecasters to
issue probability-based forecasts. These works have modified the dominant
paradigm of interpretation of the evolution of atmospheric flows (and to
some extent also of oceanic motions) attributing more importance to the
probability distribution of the variables of interest rather than to a single
representation. The ensemble experiments can be considered as crude
attempts to estimate the evolution of the probability distribution of the
climate variables, that turns out to be the only physically meaningful
quantity, but little work has been done on a direct modeling of the probability
evolution itself. In this paper we show that it is possible to write the evolution
of the probability distribution as a functional integral of the same kind
introduced by Feynman in quantum mechanics, using some of the methods
and results developed in statistical physics. The approach allows to obtain a
formal solution to the Fokker-Planck equation corresponding to the
Langevin-like equation of motion with noise. The method is very general
and it provides a framework generalizable to red noise, lagged equations
and even field equations, i.e. partial differential equations with noise. These
concepts will be applied to an example taken from a simple model of ENSO.
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1 - INTRODUCTION

The equations that govern the evolution of the atmosphere and the ocean have been known for
a long time and they have been extensively investigated. Numerical methods have been exten-
sively developed and are today the approach of choice to solve them exploiting the first order time
derivatives to obtain the time evolution. The equations soon showed a strong sensitivity to small
perturbations, both in the initial conditions or in the parameters defining them, giving rise to the
entire field of dynamical chaos [15].

The chaotic nature of the dynamics has stimulated the inclusions of methods and ideas derived
from statistics and statistical dynamics. For instance, weather predictions have recently been based
on the development of extensive ensemble systems that are designed to sample the phase space
around the nominal initial condition. Such an approach has been shown to improve substantially the
usefulness of the forecasts allowing forecasters to issue probability-based forecasts. The implicit
assumption is that the presence of various sources of errors, coupled with the intrinsic sensitivity of
the evolution equations to small errors [15], makes a single forecast less meaningful [4, 14].

The concept has gained a large consensus because it has been shown to be relevant to various
dynamical problems. Numerical experiments driven by external forcing, like those used with pre-
scribed SST or even prescribed concentration of greenhouses gases in climate change experiments,
have shown that the response to external forcing is still sensitive to error growth, either because of
uncertainties in initial condition or in model formulation. Ensemble experiments are now commonly
used in these cases [23, 27].

These works have been modifying the dominant paradigm of interpretation of the evolution of atmo-
spheric flows (and to some extent also of the ocean, see [21]) attributing more and more importance
to the probability distribution of the variables of interest rather than to a single representation. The
ensemble experiments can be considered as crude attempts to estimate the evolution of the proba-
bility distribution of the climate variables, that turns out to be the only physically meaningful quantity.
Other interesting quantities can be obtained by computing expectation values over the PDF itself.
Ensemble mean of temperature, for instance, cannot be considered simply as the average of the
available ensemble members, but as the simplest estimation of the expectation value.

Finding an equation for the evolution of the PDF is far from being trivial. There are extensive
works on the modification of the deterministic climate/weather evolution equations with a stochastic
component [9] that have shown that a stochastic component is not in contradiction with the basic
principles of the atmospheric/ocean dynamics and that such models can be considered to describe
some aspects of the atmosphere correctly in mechanistic models [5, 2, 20, 3, 24, 26] and also
estimating the stochastic component from observations [12, 7].

The addition of a stochastic noise to the evolution equation result in a multidimensional Langevin-
like equation can be shown to support a Fokker-Planck equation for the evolution of the probability
distribution of the state vector. This result is very interesting since the Fokker-Planck equation is
linear, even if the corresponding evolution equation may be nonlinear. However, this approach, when
applied directly to the discretized equation, is unpractical because the Fokker Planck equation is
obtained in a phase space with the dimensions corresponding to the number of degrees of freedom
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of the original equation. Even a very simple general circulation model can easily have hundreds of
degrees of freedom.

In this paper we show that it is possible to write the evolution of the probability distribution as a
functional integral of the same kind introduced by Feynman [6] in quantum mechanics, using some
of the methods and results developed in statistical physics [18, 8]. The approach allows to obtain
a formal solution to the Fokker-Planck equation corresponding to the Langevin-like equation of
motion with noise. The method is very general and it provides a framework easily generalizable to
red noise, lagged equations and even field equations, i.e. partial differential equations with noise.
The approach has been proved useful in fields other than physics, such as polymer theory, chemistry
and even financial markets [22, 28, 11], but it has never been applied to atmospheric and oceanic
problems and it is relatively less known in our community. The first quantum field theory formalism
describing additive noise was developed by Martin, Siggia and Rose [16], but they have used a
different kind of approach, a method similar to the canonical quantization.

In order to perform the perturbative expansion of correlation functions, we note that it is necessary
to extend the Hubbard-Stratonovich transformation to the multidimensional case as well as the
transformation introduced by Muñoz to calculate the path integral of the type considered.

After the introduction, we will introduce and summarize the general theoretical foundation in Sec-
tion 2 and discuss the calculation of the integrals in Section 3.The concept of Green’s matrix and
functions will be introduced in Section 4 and a discussion of perturbation expansion applied to
nonlinear cases will be introduced in Section 5.These concepts will be applied to an example taken
from a simple model of ENSO [10] in Section 6 and the conclusions in Section 7 will close the paper.

2 - THE PATH INTEGRAL FORMULATION

2.1 - LANGEVIN EQUATION AND PROBABILITY

The systems describing the atmosphere or the ocean can be written as a Langevin equation:

q̇µ(t) = fµ(q(t)) + εµ(t) (1)

where q(t) = (q1(t), . . . , qK(t)) represents a trajectory in RK and fµ(q) a differentiable function of
q. We are assuming that we have K degrees of freedom. The noise functions εµ(t) are defined by
their correlation functions as

γµν(t, t′) =< εµ(t)εν(t′) >ε= Qδµνδ(t− t′) (2)

and they have zero means, <>ε is an average with respect to the probability distribution of the
realizations of the stochastic variables εµ(t). A discretization can be applied, for instance denoting
as t0 and T the initial and final times we have
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τ = (T − t0)/N

tn = t0 + nτ (3)

xn = x(tn)

if we integrate the Langevine equation (1) in an infinitesimal time interval τ , after integration of the
noise, the discretized equation becomes

qn+1 − qn = τ f(qn) +
√
τεn (4)

the probability distribution of the discretized noise is given by

P (εn) = (2πQ)−1/2 exp

(
− ε2n

2Q

)
.

the mistake we make in the discretization of the equations of this type is

|q(tn + τ)− q(tn)| = O(
√
τ) with τ → 0. (5)

We can then write the conditional probability that the system will be in the state qn+1 at time tn+1

given that it was in qn at time tn,

pn(qn+1, tn+1|qn, tn) =

∫
δ(qn+1 − qn − τ f(qn)−

√
τεn)P (εn)dεn =

1

(2πQτ)−1/2
exp

[
− (qn+1 − qn − τ f(qn))2

2Qτ

]
using the Kolmogorov relation repeatedly

pn(qn+2, tn+2|qn, tn) =

∫
pn(qn+2, tn+2|qn+1, tn+1)pn(qn+1, tn+1|qn, tn)dqn+1

we can obtain the probability for the entire path

pn(qT , T |q0, t0) =

∫
dq1 · · · dqN−1

(2πQτ)N/2
exp

(
−SN (q0, . . . ,qN )

2Q

)
(6)

where we have defined

SN (q0, . . . ,qN ) =

N−1∑
n=0

[
(qn+1 − qn − τ f(qn))2

τ

]
(7)

The SN functional plays the role of the action as in classical mechanics and it is also known as the
Onsager-Machlup functional. There are N-1 integrations over the possible intermediate values of
the path, but the end points q0 and qT are fixed. Note that there are N factors in the denominator
and so presumably we will have to introduce a normalization factor later.
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2.2 - THE PROPAGATOR

The probability of reaching qT , T from any point is then given by

pn(qT , T ) =

∫
dq1 · · · dqN−1

(2πQτ)N/2
exp

(
−SN (q0, . . . ,qN )

2Q

)
p(q0, t0)dq0 (8)

that describes the evolution of the probability distribution from time t0 to time T . It is practically
the solution to the Fokker-Planck equation. The final integration on q0 resolves the normalization
issues mentioned before and we obtain a finite result. We can also write (8) as

pn(q, t) =

∫
Kn(q, t; q0, t0)Pn(q0, t0)dq0 (9)

where we have introduced

Kn(q, t; q0, t0) =

∫
dq1 · · · dqN−1

(2πQτ)N/2
exp

(
−SN (q0, . . . ,qN )

2Q

)
(10)

that is a kernel that propagates the solution from time to time. It is known as the propagator.

The concept of the path integrals recurring in these formulas is illustrated in Fig. (1). The probability
of reaching qT starting at q0 is composed by the sum of all paths that may take all possible
intermediate values at intermediate times. Their contribution must be integrated for all possible
values.

It is also possible to formulate also a continuous time treatment. Going back to the Langevin
equation:

q̇µ(t) = fµ(q(t)) + εµ(t) (11)

we can formally define a probability distribution for the stochastic process that is a solution of the
equation

P (q, t; q0, t0) =

〈
N∏
µ=1

δ[qµ(t)− qµ]

〉
ε

with t ≥ 0, (12)

in which q0 and t0 are our initial conditions. This probability is just the ensemble average over
the solutions of the Langevin equation (1). We can use the probability definition (12) to define
expectation values for all functions of q(t) = (q1(t), q2(t), . . . , qµ(t)),

〈F (q(t))〉 =

∫
P (q, t; q0, t0)F (q(t))dq1dq2 . . . dqµ∫

P (q, t; q0, t0)dq1dq2 . . . dqµ
(13)

.

In what follows we shall often omit the dependence on the initial data and use the simplified notation
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P (q, t).

Using the gaussian nature of the noise, it is possible to write a Fokker-Planck equation for P (q, t)

(summation is implied over repeated indices):

∂P (q, t)

∂t
=

∂

∂qµ

[
1

2
Q
∂P

∂qµ
− fµ(q)P

]
. (14)

The solution of this equation can be written as a path integral [8]

P (q, t) =

∫
[Dq(τ)] exp (−S(q))P (q, t0) (15)

where the integration is done over all paths q(t) that go from t0 to T . The functional S(q) is the
continuous Onsager-Machlup action that can then be defined in the general case as

S(q) =
1

2

∫ T

0

[
[q̇µ − fµ(q)]γ−1µν [q̇ν − fν(q)] +

∂fµ
∂qµ

]
dt (16)

and in the white noise case

S(q) =
1

2Q

∫ T

0

[
[q̇µ − fµ(q)]δµν [q̇ν − fν(q)] +Q

∂fµ
∂qµ

]
dt (17)

The extra divergence term in the action is generated by the difficulty of defining the derivative of a
stochastic process.

From equation (5) we note that the process paths, which are solutions of the Langevin equation,
are therefore continuous as ∆t→ 0, but they are not differentiable and therefore the ordinary rules
of calculus must be modified to come up with a consistent definition. In the case of a simple
additive noise the pathologies do not show up, but if we have multiplicative terms containing the
noise then it is absolutely necessary to choose an interpretation. In the following we will be using
the Stratonovich interpretation that allows to treat the fields as differentiable and therefore to use
them in the ordinary rules of calculus. In the case of weak additive noise the Ito interpretation is
also appropriate [8] and the divergence term drops, simplifying the action:

Sweak(q) =
1

2Q

∫ T

0

[[q̇µ − fµ(q)]δµν [q̇ν − fν(q)]] dt (18)

The expression for the probability in the continuous case is given by

P (q, t) =

∫
K(q, t; q0, t0)P (q0, t0)dq0 (19)

where dq = dq1dq2 . . . dqµ and continuous time propagator from time t0 to t is
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K(q, t; q0, t0) =

∫
[Dq(τ)] exp(−S(q)) (20)

Eq. (19) is the probability of finding the system in the state q at time t given that it was given by the
distribution P (q0, t0) at time t0, but in this expression the path integral is now for paths with fixed
extremes q0 = q(t0),q = q(T ).

2.3 - EXPECTATION VALUES AND CORRELATIONS

The expected value of some functions at a specific time, 0 < t1 < t, is given by (13) that can also
be written as

< F (q(t1)) >= N
∫
F (q1)

∫
[Dq(τ)] exp(−S(q))P (q0, t0)dq0dq1 (21)

(N is a normalization constant). This is a path integral that is now summing all the paths that go
from q0, t0 and arrive at q(t), t subject to the condition that they go through q1, t1, so we can write
(20) as

〈F (q(t1))〉 = N
∫
K(q, t; q1, t1)F (q1)K(q1, t1; q0, t0)P (q0, t0)dq0dq1 (22)

but practically we are summing over all paths, subject to the conditions that they acquire the value
q1 at t1, so we can express the whole expectation value with a single path integral introducing the
factor F (q(t1)) and making explicit the normalization,

〈F (q(t1))〉 =

∫
[Dq(τ)]F (q(t1)) exp(−S(q))P (q0, t0)dq0∫

[Dq(τ)] exp(−S(q))P (q0, t0)dq0
(23)

Correlation can be obtained by choosing for F polynomial expressions qi1(t1)qi2(t2) . . . we get

〈
qi1(t1)qi2(t2) · · · , qin−1(tn−1)qin(tn)

〉
=∫

[Dq(τ)]qi1(t1)qi2(t2) . . . , qin−1(tn−1)qin(tn) exp(−S(q))P (q0, t0)dq0∫
[Dq(τ)] exp(−S(q))P (q0, t0)dq0

(24)

3 - CALCULATING THE PATH INTEGRAL

The expression of the path integral is a formal expression and in order to give some meaning to it
we have to treat it as the value of a limiting procedure through the discretization. We illustrate the
concept using the weak noise action for simplicity. Using the discretization introduced in the previous
Section we have to perform an integration at every point j as we are summing over all possible
paths, i.e. functions, that interpolate between t0 and T . In this way we obtain an approximate value
of the path integral for a certain finite N . The exact value is then taken by the following limit, if it
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exists

K(q, t; q0, t0) = lim
N→∞
Nτ→t

∫
· · ·
∫
Dd[q(t)] exp

(
−S(qj ,qj−1)

2

)
(25)

and and the boundary conditions qN = q(T ) and q0 = q(t0). The measure is introduced by
integrating on the d-dimensional space at every point in the discretization j,

Dd[q(t)] =
1

(2Qπτ)Nd/2

N−1∏
j=1

(dq1 · · · dqd)j (26)

and the discretized action is then

S(qj) =
1

τQ

N∑
j=1

[qj − qj−1 − τfj(qj−1)]
2 (27)

The value of the path integral is then given by the existence of the infinite integration implicit in this
relation. The choice of the discretization is important because the term

(qj − qj−1)fj(qj−1)

is ill-defined and it must be treated carefully. It turns out that Feynman’s [6] original choice of
symmetrizing the term as

(qj − qj−1)
f(qj−1) + f(qj)

2

is equivalent to choosing the Stratonovich interpretation and the calculation is possible.

Practically, computable path integrals are rare and they are essentially limited to gaussian integrals.
They can be calculated directly from the discretization introduced previously and it is definitely the
method that shows the most delicate points and possible traps for the definition of the integrals.
There is also another approach that can be used for quadratic lagrangians that is somewhat quicker
that is based on the projection on eigenfunctions.

Gaussian path integrals are generated when the function f(qj) is a linear operator A. In this case
the action can be written as

S(q) =
1

2Q

∫ T

0

[
[q̇−Aq]T [q̇−Aq]

]
+QTr(A)dt (28)

and the path integrals become

K(q, T ; q0, t0) = e(−
1
2Tr(A)T)

∫
[Dq(τ)] exp(− 1

2Q

∫ T

0

[q̇−Aq]T [q̇−Aq]dt) (29)
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The usual procedure requires here that we seek stationarity conditions for the action. However,
there is a problem generated by the fact that for a system of the present form there are two solutions
to the first order variations that correspond to the equation of motion. The solutions correspond to
the choice q = r such that

ṙ = ±Ar r(0) = q0

the unperturbed trajectory corresponds to the plus sign and obviously it would be desirable to be
able to investigate the perturbation around this solution, but this is tricky because the particular
value of the action in this case is zero making a traditional expansion impossible. However, as it
was pointed out by [17] there is a method that allows the expansion along the correct solution and
also satisfies both boundary conditions for the integration in the action. It is necessary to introduce
a change of variables quantity q = r + g, such that the action (28) can be written as

S = − 1

2Q

∫ T

0

(ṙ + ġ −A(r + g))
T

(ṙ + ġ −A(r + g)) dt = − 1

2Q

∫ T

0

(ġ −Ag)
T

(ġ −Ag) dt (30)

because the r satisfies the equation of motion. The boundary conditions on this expression are
given by

g(0) = 0 g(T ) = qT − r(T )

The measure of the integral does not change since it is a linear transformation. We can now
substitute around an unperturbed trajectory such that deviations of order

√
Q are introduced obeying

the boundary conditions y(0) = y(T ) = 0

g(t) = gc(t)− y(t)
√
Q (31)

Substituing eq. (31) in the Action (29) we get

S =

∫ T

0

(ġc −Agc)
T

(ġc −Agc) + 2 (ẏ −Ay)
T

(ġc −Agc) + (ẏ −Ay)
T

(ẏ −Ay) dt (32)

integrating by parts the various terms and using the boundary conditions we obtain

S = − 1
2Q

(
gTc ġc + gTc Agc

)
|T0 −

1
2Q

∫ T
0

gTc
(
−g̈c + (AT −A)ġc + AATgc

)
dt− (33)

1
2Q

∫ T
0

yT
(
−g̈c + (AT −A)ġc + AATgc

)
dt−

1
2Q

∫ T
0

yT
(
−ÿ + (AT −A)ẏ + AATy

)
dt−



10

C
en

tr
o

E
ur

o-
M

ed
ite

rr
an

eo
pe

r
iC

am
bi

am
en

ti
C

lim
at

ic
i

CMCC Research Papers

so if we choose a gc that satisfies the equation with the given boundary conditions

−g̈c + (AT −A)ġc + AATgc = 0 (34)

we can divide the action in two parts, the explicit terms depending on the boundary conditions and
implicitly from the unperturbed solution r and a term that depends only on the fluctuations y,

S = − 1
2Q

(
gTc ġc + gTc Agc

)
|T0 −

1
2Q

∫ T
0

yT
(
−ÿ + (AT −A)ẏ + AATy

)
dt = S1 + S2

The term S1 does not depend on the varying path and therefore can be taken out from the integration
whereas the term S2 will depend only on time and it is often called the prefactor. The propagator
(29) can then be written as

K(q, T ; q0, t0) = exp

(
−1

2
Tr(A)T

)
exp

(
− S1

2Q

)∫
[Dy(τ)] exp

(
− 1

2Q

∫ T

0

yT
(
−ÿ + (AT −A)ẏ + AATy

)
dt

)
(35)

with boundary conditions y(0) = y(T ) = 0

The remaining calculation can be finished by observing that the action in the paths y is then
equivalent to a Sturm-Liouville boundary problem for the differential operator Λ

∫ T

0

yT
(
−ÿ + (AT −A)ẏ + AATy

)
dt =

∫ T

0

[
yTΛy

]
dt (36)

The operator Λ is self-adjoint and so it has a complete orthonormal set of eigenfunctions φn1,n2,...,nd

with real eigenvalues µn1
, µn2

, . . . , µnd . The eigenfunction and eigenvalues are d-multiple infinities
as a consequence of the dimensionality d of the operator. We can expand the variables y in series
of the complete orthonormal eigenfunctions and we get

1

2Q

∫ T

0

yTΛydt =
1

2Q

∫ T

0

∑
ni

cniφni
∑
nj

µnjcnjφnj =
1

2Q

∑
ni

c2iµni (37)

Using this approach we can write the path integral (20) as an infinite set of gaussian integrals over
the coefficients of the expansion. A change of variables from the variables from the q to the c will
allow the execution of the integral. Because Λ is self-adjoint it can be diagonalized by a unitary
transformation with a unit Jacobian for the change of variables so the path integral measure remains
the same,
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K(q, T ; q0, t0) = exp

(
− 1

2Q
S1

)∫
· · ·
∫

1

(2Qπ)Nd/2

N−1∏
j=1

(dc1 · · · dcd)j exp

(
− 1

2Q

N−1∑
i=1

c2iµni

)
(38)

and the boundary conditions are satisfied by the eigenfunctions. The integral is then formed by an
infinite number of gaussian integrals that each contributes a factor

K(q, T ; q0, t0) = e(−
1
2Tr(A)T) exp

(
− 1

2Q
S1

)
1

(2Qπ)Nd/2

N−1,d∏
ni=1,i=1

(
2πQ

µni

)1/2

(39)

or

K(q, T ; q0, t0) = e(−
1
2Tr(A)T) exp

(
− 1

2Q
S1

)
1

2Qπ

N−1,d∏
ni=1,i=1

(
1

µni

)1/2

(40)

The case of the Free evolution of the system with A = 0 is interesting and it corresponds to a pure
Brownian motion. In this case we get

KF (q, T ; q0, t0) = exp

(
− 1

2Q
SF1

)
1

2Qπ

N−1,d∏
ni=1,i=1

(
T 2

n2iπ
2

)1/2

(41)

but KF can be obtained also by a direct calculation [25, 6] and we get

KF (q, T ; q0, t0) =

(
1

2Qπ(T − t0)

)d/2
exp

(
− 1

2Q

(q− q0)2

T − t0

)
=

(
1

2Qπ(T − t0)

)d/2
exp(−S

F
1

2Q
)

(42)

The Free Propagator provides a convenient reference frame for the other cases as the ratio

K

KF
= e(−

1
2Tr(A)T) exp

[
− 1

2Q
(S1 − SF1 )

](
det ΛF
det Λ

)1/2

and using the explicit expression (42) we have

K(q, T ; q0, t0) = e(−
1
2Tr(A)T)

(
1

2Qπ(T − t0)

)d/2
exp

[
− 1

2Q
S1

](
det ΛF
det Λ

)1/2

(43)

where

det ΛF =

N,d∏
ni=1,i=1

(
T 2

n2iπ
2

)
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and

det Λ =

N,d∏
ni=1,i=1

(µni) .

More general quadratic actions, including the case of time-varying coefficients, can also be com-
puted completely [19].

4 - GREEN’S FUNCTIONS AND GENERATING FUNCTIONS

The stochastic process that is a solution to the Langevin equation (1) is completely determined by
the normalized multi-points correlation functions

G(n)
α1...αµ(t1, t2, . . . , tn) =

〈
qα1

(t1)qα2
(t2) . . . , qαn−1

(tn−1)qαn(tn)
〉

N

the indices α count the different variables in a multi-dimensional case. These functions express the
probability that the path assumes the values qα1(t1)qα2(t2) . . . , qαn−1(tn−1)qαn(tn) at the respective
times. It is also the expectation value for the same polynomial products and so it is the basic building
block for the series expansion of any other functional.

The n-point function can be normalized as

G(n)
α1...αµ(t1, t2, . . . , tn) =

∫
[Dq(τ)]qα1(t1)qα2(t2) . . . , qαn−1(tn−1)qαn(tn) exp(−S(q))∫

[Dq(τ)] exp(−S(q))

where we have used P (q0, t0) = δ(q− q0) for simplicity.

The calculation of the n-points correlation functions is tricky, but it can be simplified by introducing
a special functional, the moment generating functional

Z[J ] =

∫
[Dq(τ)] exp

(
−S(q) +

∫
J(t) · q(t)dt

)∫
[Dq(τ)] exp(−S(q))

(44)

the functional derivative of which

(
δ

δJµ(t1)
Z[J ]

) ∣∣∣∣∣
J=0

=

∫
[Dq(τ)]qµ(t1) exp(−S(q))∫

[Dq(τ)] exp(−S(q))
= 〈qµ(t1)〉 (45)

provides the expectation value for the mean. Repeating the process we can get the higher order
correlations

(
δ

δJµ(t1)

δ

δJν(t2)
Z[J ]

) ∣∣∣∣∣
J=0

=

∫
[Dq(τ)]qµ(t1)qν(t2) exp(−S(q))∫

[Dq(τ)] exp(−S(q))
= 〈qµ(t1)qν(t2)〉 (46)
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and for a generic functional we have

(
F [

δ

δJµ(t1)
]Z[J ]

) ∣∣∣∣∣
J=0

=

∫
[Dq(τ)]F [qµ(t1)] exp(−S(q))∫

[Dq(τ)] exp(−S(q))
= 〈F [qµ(t1)]〉 . (47)

The generating function can be obtained by evaluating the path integral

Z[J ] =

∫
[Dq(τ)] exp(−S(q) +

∫
qTJ(t))dt∫

[Dq(τ)] exp(−S(q))dt
(48)

In the case of quadratic action the generating function can be calculated explicitly. We can start
from the action in eq. (30) to get

Z[J ] =

∫
[Dq(τ)] exp

(∫
− 1

2Q (ġ −Ag)T (ġ −Ag) + gTJ(t)
)
dt∫

[Dq(τ)] exp
(∫
− 1

2Q (ġ −Ag)T (ġ −Ag)
)
dt

. (49)

We can look for deviation from the solution of the stationarity condition for the path integral given by
the equation

−g̈c + (AT −A)ġc +ATAgc = QJ (50)

so that g = gc +
√
Qy. The numerator can be expressed as

Z[J ] = exp

(∫
− 1

2Q
gTc (g̈c + (AT −A)ġc +ATAgc) + gTc J(t)

)
×
∫

[Dq(τ)] exp

(
−
∫

(ẏ −Ay)T (ẏ −Ay)

)
dt

× exp
(
gTc (ġc −Agc)|T0

)
(51)

using the equation of motion (50) we then get

Z[J ] = exp

(∫
1

2
gTc J(t)

)
×
∫

[Dq(τ)] exp

(
−
∫

(ẏ −Ay)T (ẏ −Ay)

)
dt

× exp
(
gTc (ġc −Agc)|T0

)
(52)

and the normalized characteristic function is then simply

Z[J ]

Z[0]
= exp

(∫
1

2
gTc (J(t)

)
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The solution gc can be obtained via the Green’s function of the equation of motion

(
d2

dt2
+ (AT −A)

d

dt
−ATA

)
GA(τ, τ ′) = δ(τ − τ ′) (53)

with G(0, τ ′) = 0, GA(T, τ ′) = qT − r(T ) so

gc(τ) =

∫ T

0

GA(τ, τ ′)J(τ ′)dτ ′

and so the generating function is given by

Z[J ] = exp

(
1

2

∫ T

0

∫ T

0

J(τ)GA(τ, τ ′)J(τ ′)dτdτ ′

)

5 - PERTURBATION EXPANSIONS

5.1 - FEYNMAN DIAGRAMS

The path integral formulation adapts itself very naturally to the definition of perturbation expansions
of various kinds to compute the correction to the probability distribution and the correlation functions.
The technique looks involuted, but it can be generalized very easily and it can be the base for
applications to field equations arising in a field theory.

Consider the propagator for a nonlinear evolution, q̇ −Aq − µf(q) = 0, where µ is parameter that
measures the strength of the nonlinear terms,

K(q, T ; q0, t0) =

∫ qT

q0

[Dq(τ)] exp

(
− 1

2Q

∫ T

0

(q̇−Aq− µf)
T

(q̇−Aq− µf(q)) dt

)
(54)

We can introduce the same coordinate transformation described in Sect. 3 so that the action can
be written as

S = − 1

2Q

∫ T

0

(ġ −Ag − µf(r + g))
T

(ġ −Ag − µf(r + g)) . (55)

The quadratic nature of the action creates a potential problem because the expansion of the terms
according to powers of the coupling constant µ generate terms of the form ġf(g) that couples state
variables with derivatives. It is possible to overcome this problem by using the Hubbard-Stratonovich
transformation [13, 1], extended to the multidimensional case, that is a generalization of the identity
to the functional integrals

exp

(
−x

2

2a

)
=

√
a

2π

∫ ∞
−∞

exp

(
−ay

2

2
− ixy

)
dy.
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The propagator becomes then

K(g, T ; g0, 0) =

∫
D[y(t)]

∫ gT

g0

D[g(t)]

exp

(
−
∫ T

0

QyTy

2
− iyT (ġ −Ag − µf(g + r)) +

µ

2
∂ifi(g + r) + Tr(A)dt

)
(56)

where the auxiliary functions y(t) are defined over the entire time axis. We can introduce the field
φ(t) = −iy(t) and the trace of the linear part can be taken outside the functional integrals as it does
not depend on the paths, yielding

K(g, T ; g0, 0) = exp

(
−
∫ T

0

Tr(A)dt

)
∫
D[φ(t)]

∫ gT

g0

D[g(t)] exp

[
−
∫ T

0

Qφ∗φ

2
+ φ∗(ġ −Ag)dt

]
×

exp

[∫ T

0

µφ∗f(g + r)− µ

2
∂if(g + r)

]
dt (57)

or

KV (g, T ; g0, 0) =

∫
D[φ(t)]

∫ gT

g0

D[g(t)] exp(−S0) exp(

∫ T

0

V (t)dt) (58)

the subscript V has been added to underscore the dependence of this propagator on the nonlinear
terms in the second exponential exp(V ), whereas the quadratic terms are contained in S0. The
term V contains higher order terms that reflect the impact of the nonlinear interactions. The scalar
product is defined as (x,y) = x∗ẏ where the asterisk indicates hermitian conjugation, (.∗) = (̄.)

T
.

The propagator corresponding to the quadratic part describes the evolution of the system without
interaction and so it can be described as the free evolution of the system. Usually it can be computed
exactly:

K0(g, T ; g0, 0) =

∫
D[φ]

∫ gT

g0

D[g(t)] exp(−S0) (59)

whereas in the presence of interactions we have

KV (g, T ; g0, 0) =

∫
D[φ]

∫ gT

g0

D[g(t)] exp(−S0) exp

(∫ T

0

V (g, φ)dt

)
=

〈
exp

(
1

2Q

∫ T

0

V (g, φ)dt

)〉
0

(60)
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in other words the propagator for the problem is the expected value of the interaction with respect
to the probability distribution of the unperturbed, usually linear, problem.

In the presence of a small coupling constant the exponential for the interaction can be expanded in
series, yielding successive correction to the free propagator

KV (g, T ; g0, 0) = K0

(
1 +

1

2Q

〈∫ T

0

V (g, φ)dt)

〉
0

+

1

4Q2

〈
1

2

∫ T

0

∫ T

0

V (g(t), φ(t))V (g(t′), φ(t′))dtdt′

〉
0

+ · · ·

)
. (61)

In the particular case of a polynomial interaction, the expectation values correspond to the moments
of V with respect the unperturbed probability distribution. In the case of a polynomial V these
expectation values can be computed using the generating functional (46).

5.2 - PERTURBATION EXPANSION FOR THE CORRELATION FUNCTIONS

The generating function can also be written for the nonlinear case using the transformed action
(57). It is convenient to write it using using the real vector J = (j,k) = (j1, j2, k3, k4) as the source
term, so that

Z(J) =

∫
D[φ]

∫ gT
g0
D[g] exp

(
−
∫ T
0

1
2Qφ∗φ + φ∗(ġ −Ag)− g∗j− φ∗k dt

)
exp

[∫ T
0
V (g, r,φ)dt

]
∫
D[φ]

∫ gT
g0
D[g(t)] exp

(
−
∫ T
0

1
2Qφ∗φ + φ∗(ġ −Ag)dt

)
(62)

where

exp(

∫ T

0

V (g, r,φ)dt) = exp

[∫ T

0

µφT f(g + r)− µ

2
∂if(g + r)dt

]

for a small coupling constant µ we can expand the exponential in a Taylor series to obtain

exp(

∫
V (t)dt) = 1 + µ

∫
V (t)dt+

µ2

2

∫ ∫
V (t)V (t′)dtdt′ (63)

When the function of the path V is a polynomial every term is the expectation value of the terms of
the series expansion of the exponential and each can be obtained by differentiating the generating
function of the free evolution. We can formally exponentiate the series and write for the generating
function of the nonlinear case

Z(J) = exp

(
V (

δ

δJ
)

)
Z0(J) (64)
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that must be normalized by Z(0). The expression for the quadratic generating function can be
written as

Z0(J) =

∫
D[φ]

∫ gT
g0
D[g] exp

(
−
∫ T
0

1
2Qφ∗φ + φ∗(ġ −Ag)− g∗j− φ∗k dt

)
∫
D[φ]

∫ gT
g0
D[g(t)] exp

(
−
∫ T
0

1
2Qφ∗φ + φ∗(ġ −Ag)dt

) (65)

where we have added a zero subscript to indicate that it is the generating function for the linear
evolution. Introducing the vector u = (g, φ) we can write

Z0(J) =

∫ uT
u0
D[u(t)] exp

(
−
∫ T
0

1
2u∗∆−1u− u∗J dt

)
∫ uT
u0
D[u(t)] exp

(
− 1

2

∫ T
0

u∗∆−1u dt
) (66)

where ∆−1 is the hermitian operator

∆−1 =

(
0 −∂t + A∗

∂t + A Q

)
. (67)

As shown in (51) and the following analysis, we can get an explicit form for Z0[J ] by inserting a shift
u = uc + w and the numerator becomes

Z0[J ]=

∫ wT

w0

D[w(t)] exp

(
−
∫ T

0

1

2
u∗c∆

−1uc+
1

2
w∗∆−1uc+

1

2
u∗c∆

−1w+
1

2
w∗∆−1w−u∗cJ−w∗J dt

)
(68)

and we can find uc so that ∆−1uc − J = 0 then

Z0[J ] =

∫ wT

w0

D[w(t)] exp

(
−
∫ T

0

1

2
u∗cJ + w∗J +

1

2
w∗∆−1w − u∗cJ−w∗J dt

)
=

∫ uT

u0

D[w(t)] exp

(∫ T

0

1

2
u∗cJ dt

)
exp

(
−1

2
w∗∆−1w dt

)
(69)

the remaining path integral over w(t) is eliminated by the normalization and so the generating
function is given by

Z0[J ] = exp

(∫ T

0

1

2
u∗cJ dt

)
. (70)

The solution uc can be expressed in terms of the Green’s function of the operator ∆−1,
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uc(t) =

∫ T

0

G(t, t′)J(t′) dt′ (71)

and the final form of the generating function is

Z0[J ] = exp

(
1

2

∫ T

0

∫ T

0

J∗(t)G∗(t, t′) J(t′) dtdt′

)
. (72)

6 - THE CASE OF THE ENSO

[10] proposed a simple model of the ENSO system based on the recharge theory. They showed
that ENSO can be described by a simple linear system

dh

dt
= −rh− αµb0T

dT

dt
= (γµb0 − c)T + γh

where T is the anomaly SST in the West Pacific and h is the anomaly depth of the thermocline in
the East. The parameter µ measures the strength of the interaction between the SST and the wind
stress. Introducing the vector q = (h, θ) we can write it as

d

dt

(
h

θ

)
=

(
−r −αµb0
γ γµb0 − c

)(
h

θ

)

A coordinate transformation of the vector (h, θ) will allow us to transform the matrix to the standard
form

d

dt

(
z1

z2

)
=

(
β −w
w β

)(
z1

z2

)
(73)

The action for this system is given by

S =
1

2Q

∫ T

0

(ż−Az)T (ż−Az) + Tr(A)dt

The solution without noise r(t), around which the action must be expanded, is represented by an
exponentially modulated oscillation. The period of the oscillation is w and the time scale of its
exponential growth/decay is given by 1/β, the oscillation are damped if β < 0 and are unbounded
in case of β > 0. Neutral oscillations occur for β = 0.

r(t) =

(
eβt (z10 cos(tw)− z20 sin(tw))

eβt (z20 cos(tw) + z10 sin(tw))

)
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The solution of the stationarity equation (34) satisfying the boundary conditions that allow the
calculation of the fluctuation prefactor is given by the function gc

 sinh(βt)(z20 sin(tw−2Tw)eβT+z10 cos(w(2T−t))eβT−2z1T cos(w(T−t))+z2T sin(w(T−t)))
sinh(βT )

− sinh(βt)(2z10 sin(tw−2Tw)eβT−z20 cos(w(2T−t))eβT+z2T cos(w(T−t))+z1T sin(w(T−t)))
sinh(βT )


and so the propagator can be written as

K0(0, T ; z10, z20, z1T , z2T ) =
βeβT

2πQ sinh(βT )

exp

(
− β

2Q sinh(βT )

[
e−βT (z210 + z220) + eβT (z21T + z22T )

+2 sin(wT )(z1T z20 − z10z2T )− 2 cos(wT )(z10z1T + z20z2T )]

)
(74)

With the choice of parameters proposed in [10], c = 1, γ = 0.75, r = 0.25, α = 0.125, b0 = 2.5, µ =

2/3, the system undergoes stable oscillations and the values of the corresponding matrix L are
β = 0 and w =

√
3/32. The corresponding propagator can be written as

Kc =
1

2πQT
exp

(
− 1

2QT

(
z210 + z21T + z22T + z220

−2 cos (Tw) (z10z1T + z20z2T ) + 2 sin(wT )(z1T z20 − z10z2T ))

)
(75)

Fig. 4 shows the probability distribution obtained for a propagator for an initial probability distribution
that is a delta function at the origin. It is a gaussian (in the figure only the section for z2T = 0

is shown) whose standard deviation increases with time. The system is analogous to a Brownian
motion with the particle diffusing in the entire space.

The period of the oscillation is close to 20 months and the separate members of the ensemble
deviate rapidly as the system evolves. Fig.2 shows the evolution of the individual members of the
ensemble as the oscillation gains larger and larger amplitude. The basic linear oscillation is neutral
, so it is the stochastic fluctuations that create the amplification effect that results in the flattening of
the probability distribution at later times.

For values of µ smaller than the critical value the oscillation is damped, but the stochastic forcing
can counterbalance it, slowing the amplification and permitting a statistical equilibrium. Fig. 2 shows
the time evolution for the damped case and it is possible to see how the divergence is considerably
slowed down. Depending on the magnitude of the stochastic force Q, a different value of µ is
necessary for equilibrium.

The probability distribution is correctly estimated by the propagator as it can be seen in Fig. 3. The
zeroth order generating function can be obtained from the Green’s function as in (71). The Green’s
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matrix can be computed from the fundamental solutions of the system (73) following the results by
(Turk). For instance the two point correlation function is given by the second functional derivative of
Z0(J),

〈z1(x)z1(t)〉 =

(
δ

δJ1(x)

δ

δJ1(t)
Z0[J]

) ∣∣∣∣∣
J=0

=

1

2

δ

δJ1(x)

(∫ T

0

∫ T

0

δ(t− τ)G11(τ, τ ′)J1(τ ′)dτdτ ′ +

∫ T

0

∫ T

0

J1(τ)G11(τ, τ ′)δ(t− τ ′)dτdτ ′
)
Z0[J]

∣∣∣∣∣
J=0

=

1

2

∫ T

0

δ(x− τ ′)G11(t, τ ′)dτ ′ +
1

2

∫ T

0

G11(τ, t)δ(x− τ)dτ =
1

2
(G11(t, x) +G11(x, t)) (76)

The Green’s function G11 for the model ENSO problem in the transformed coordinates is given by

G11(x, t) = −
Q cos(t w − w x)

(
sinh(βt) sinh(β x)

eβ T
− sinh(β T ) sinh(β t)

eβ x

)
β sinh(β T )

θ(x− t)

−
Q cos(tw − wx)

(
sinh(β t) sinh(β x)

eβ T
− sinh(βT ) sinh(β x)

eβ t

)
β sinh(β T )

θ(t− x) (77)

and so the standard deviation is given by equal time correlations (x = t)

〈z1(t)z1(t)〉 = −Q cosh(β T − 2β t)−Q cosh(β T )

2β sinh(β T )
,

considering the evolution for a semi-infinite domain as T becomes very large we have

〈z1(t)z1(t)〉 = −
Q
(
e−2βt − 1

)
2β

that has the equilibrium value of

〈z1(t)z1(t)〉eq =
Q

2β
.

It is interesting to note that the same time correlation does not depend on the oscillating part of
the solution and the frequency w does not appear anywhere. The autocorrelation for positive lags
τ = x− t is given by

〈z1(t)z1(t+ τ)〉 =
Q cos(τw)

(
1− e−2βt

)
2βeβτ

that has the equilibrium value
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〈z1(t)z1(t+ τ)〉eq =
Qe−βτ cos(τw)

2β
.

The cross-correlations in these coordinates are identically zero, but going back to the (h, θ) coordi-
nates will recover the correlations shown in [10].

In the same paper a nonlinear extension of the standard model is proposed. The nonlinear terms
represent the negative feedback of the thermocline and involve the strength of the coupling between
the wind stress and the SST and they are cubic in h and θ. The extra term appears only in the
equation for the temperature as

−ε(bθ + h)3

We can use this expression to get the non linear terms in the action (56) to obtain the perturbation
expansion in power of the interaction coefficient ε that corrects the free (linear) propagator in the
presence of nonlinear terms. The expansion is rather tedious and to illustrate the point we will
somewhat simplify the system by reducing the nonlinear term to a simple form obtaining a simplified
version of the cubic nonlinear term in the system (73) that will result in

d

dt

(
z1

z2

)
=

(
β −w
w β

)(
z1

z2

)
+

(
0

−εz32

)
(78)

where ε measures the strength of the nonlinearity and it can be scaled by β.

The action for this system is given by (57) where the z plays the role of the g. The relevant terms in
the action are those deriving from φT f(z + r) that in case reduce to the interaction terms between
φ2 and z2, −εβφ2g32 . There are also terms deriving from the divergence in the action. In the present
case of a cubic interaction those terms are quadratic and in principle they could be included in the
explicit linear action, but we will treat them perturbatively to illustrate the point.

The interaction terms are therefore given by:

VI(φ, z) = εβ

(
3z22
2
− φ2z32

)
The generating function for these terms is then given by (64)

ZV (J) = exp

(
VI(

δ

δJ
)

)
Z0(J)

that can be expanded in power of ε,

ZV (J) =

[
1 +

∫ T

0

VI

(
δ

δj1(τ)
,

δ

δj2(τ)
,

δ

δk3(τ)
,

δ

δk4(τ)

)
dt+ · · ·

]
Z0(J)

∣∣
J=0
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where we have introduced for convenience the numbering j = (j1, j2) and k = (k3, k4). The
functional derivatives have to be evaluated at the same time point, τ , and they correspond to the
powers of the dynamical variables. The quadratic term corresponds to two functional derivatives
with respect to j2(t) as in (76). The basic rules of functional derivation are given by

δf(t)

δg(τ)
= 0

δf(t)

δf(τ)
= δ(t− τ)

and so the two derivatives in the first term will eliminate all terms with less than two j, k whereas
the terms with a larger number of (j,k) will be eliminated by the evaluation at J = (j,k) = 0. Due to
these mechanisms the derivative select only quadratic terms in the expansion of Z resulting in

3

2

∫ T

0

G22(τ, τ)dτ.

The other term will be obtained by taking four derivatives, three with respect to j2 and one with
respect to k4. There are two such terms

j2G24k4j2G22j2, k4G42j2j2G22j2

using again the method described before the contribution of the φ2z32 term is

4!

8

∫ T

0

(G24(τ, τ) +G42(τ, τ))G22(τ, τ)dτ

As an example we will compute the correction of the temporal covariance of z1 to demonstrate the
approach. This covariance is given by the 2-point correlation function

〈z1(t1)z1(t2)〉 =

(
1

ZV [J]

δ

δJ1(t1)

δ

δJ1(t2)
ZV [J]

) ∣∣∣∣∣
J=0

the denominator is given by the expression computed previously

1 + ε

(
3

2

∫ T

0

G22(τ, τ)dτ +
4!

8

∫ T

0

(G24(τ, τ) +G42(τ, τ))G22(τ, τ)dτ

)
,

the numerator is more complicated because now there are two more derivatives. The same ar-
guments used before now lead to the conclusion that only terms with three Green’s functions will
survive. The problem is combinatorial and it is well known in quantum field theory, it is essentially
the same as finding all possible combinations of six points in time: the “external” points, t1, t2, and
the “internal” points τ that are going to be integrated over. Depending on which of the six j or k
the derivatives will be acting the external points will generate different kinds of integrals. The zero
order in ε is simply G22(t1, t2), but for the first order we need to count the contribution from VI . The
quadratic term in z2 will result in
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M1
1

8

3

2

∫ T

0

G22(t1, τ)G22(τ, t2)dτ (79)

M2
1

8

3

2

∫ T

0

G22(t1, t2)G22(τ, τ)dτ. (80)

The combinatorial analysis indicates that in all there are 4 4! terms given by the four time points
we are treating (t1, t2, τ, τ), organized in such a way that M1 = 16 and M2 = 8. More complicated
expressions are obtained from the quartic terms. In this case there are three Green’s functions
involved G22, G24 and G42. Considering first the combination with G24 we can see that there are
5! ∗ 3 = 360 terms,

M3
1

3!

1

8

∫ T

0

G22(t1, t2)G22(τ, τ)G24(τ, τ)dτ (81)

M4
1

3!

1

8

∫ T

0

G22(t1, τ)G24(τ, τ)G22(τ, t2)dτ (82)

M5
1

3!

1

8

∫ T

0

G22(t1, τ)G22(τ, τ)G24(τ, t2)dτ. (83)

with M3 = 144, M4 = 144, M5 = 72. Another 360 terms will come from the symmetric terms
containing G42.

However some simplification can be obtained because we can factor the numerator to the first order
in ε in such a way as to cancel completely the normalization at the denominator. We can collect the
G22(t1, t2) to obtain for the numerator,

G22(t1, t2)

(
1 + ε

∫ T

0

3

2
G22(τ, τ)dτ + 3ε

∫ T

0

G22(τ, τ)G24(τ, τ)dτ + 3ε

∫ T

0

G22(τ, τ)G42(τ, τ)dτ

)
+ other terms in ε (84)

or at the first order in ε

(
1 + ε

∫ T

0

3

2
G22(τ, τ)dτ + 3ε

∫ T

0

G22(τ, τ)G24(τ, τ)dτ + 3ε

∫ T

0

G22(τ, τ)G42(τ, τ)dτ

)
×

(G22(t1, t2) + other terms in ε) (85)

first parenthesis cancels with the numerator and we obtain he final expression for the variance

〈z1(t1)z1(t2)〉 = G22(t1, t2) + other terms in ε
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namely, it is the unperturbed variance corrected by the nonlinear terms.

The terms in the perturbation expansion can be expressed with a graphical representation via
Feynman diagrams. In our problem there are three kind of propagators, corresponding to the matrix
elements of the Green’s matrix. The diagonal element generates the propagator of the state variable
z and the off diagonal terms, that turn out to be symmetric, generate the propagator connecting
the state variable to the auxiliary variables φ. We can graphically express the Green’s function
G22(t1, t2) with a straight line. The G24 propagator instead can be seen as a dashed-continuous
line. The points t1 and t2 are the external lines of the graph, the time point τ is recurring twice and
therefore is special, because it has two lines that must be connected with the other point

The quadratic terms (80) can be written graphically as in Fig. 7. The (b) graph in the figure represents
the integral where we can factor out theG22(t1, t2) propagator. It is an example of the fact that these
kinds of terms show up graphically as made up of separate parts, the so-called “disconnected”
graph, in this example it is the product of G22(t1, t2) and

∫ T
0
G22(τ, τ)dτ .

The terms corresponding to z32φ2 are more complicated. The internal vertex is of order four and it
has four lines, that must be connected with two external points. A four line vertex corresponds to the
product of two Green’s functions, in this case a G22 and a G24, because there are only two external
lines the other two lines must be closing on themselves. The graphs are shown in Fig.8, without
showing all the possible symmetries and exchanges that go into producing all the 720 terms.

The disconnected graphs are the product of the component graphs, so the final correction to the
variance or 2-point correlation can be written in the form

〈z1(t1)z1(t2)〉 = G22(t1, t2) +M2
ε

8

3

2

∫ T

0

G22(t1, t2)G22(τ, τ)dτ+

εM4
1

3!

1

8

∫ T

0

G22(t1, τ)G24(τ, τ)G22(τ, t2)dτ + εM5
1

3!

1

8

∫ T

0

G22(t1, τ)G22(τ, τ)G24(τ, t2)dτ (86)

The results are shown in Fig.9. The figure shows the time evolution of the variance at equal times
of an ensemble of 2000 numerical simulations. The solid line for the linear case concurs with the
theoretical value at equilibrium, Q/2β = 8, within the errors. The first order estimate of the nonlinear
equilibration gives 7.35 and 6.50 for ε = 0.1 and ε = 0.3 that are also agreeing with results.

7 - CONCLUSIONS

This paper has shown that the path integral formulation and functional methods can be used
for stochastic equations derived from the type of equation of motion that are used to describe the
atmosphere and the ocean. In this framework these equations pose special problems as, in general,
they do not admit a potential and are only first order in time resulting in an action that has a special
form that introduces coupling terms between the velocity terms and the forcing function.

This problem prevents a straightforward application of the method as in quantum physics but it can
be treated by a careful consideration of the boundary conditions. It is also shown that problems in
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dimensions higher than one with no potential can still be treated using the Stratonovich-Hubbard
transformation. A perturbation expansion can then be designed for nonlinear cases based on the
calculation of the generating function for the n-points correlation functions and Feynman diagrams
can be introduced.

The method is general and most of the methods, concepts and techniques can be extended to
stochastic partial differential equations.
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Discretized Path Integral

q
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Figure 1: Discretization of the path integral. The initial q0 and final qN variable are not integrated
over
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(a) Evolution for µ = 2/3
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(b) Evolution for µ = 1/2

Figure 2: The time evolution of 10 members for the critical case (a) and the subcritical case (b).
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(a) Probability from Propagator
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(b) Probability from Numerical Experiment

Figure 3: The probability distribution for the subcritical case (µ = 1/2) from the propagator (a) and
from 2000 numerical experiment (b). The solid line correspond to T=1, the dashed line to T=2 and
the dot-dashed line to T=8.
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(a) Propagator
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ENSO system at critical values

(b) Numerical Experiment

Figure 4: The section of the probability distribution at z2T = 0 for a particle at different final times
starting at the origin obtained from the theoretical propagator (a); probability distribution for z2T
obtain from numerical experiments of the linear system with stochastic forcing with a sample of
2000 integrations (b) at the same final times as above.

t1 t2

G22

(a)

t1 t2

G24

(b)

Figure 5: The propagators of the system: (a) the propagator for the variables (z2, z2) (b) the
propagator for the variables (z2, φ2). A corresponding propagator can be obtained exchanging 2
and 4.
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Figure 6: The internal vertex τ . (a) for the quadratic term z22 , (b) for the the quartic term z32φ2

t1 t2
τ

t2t1

τ

(a) (b)

Figure 7: The graphical representation of the propagator for G24

(a)
t2t1 t2t1

(b)

t2t1
(c)

τ

Figure 8: The terms of the perturbation expansion for the 2-point correlation, the variance. The
full contribution can be obtained by using symmetry over all the vertices and adding the graphs
obtained exchanging 2 with 4: (a) disconnected graph, corresponding to (81), (b) graph with G24

integrated over the internal vertex τ , corresponding to (82), (c) graph with G24 into an external point
corresponding to (83).
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Figure 9: The evolution of the equal time variance for an ensembles of 2000 simulations for the test
system. The averaged variance computed after equilibration and its standard deviation is shown on
the right. The solid line represent the linear system, the dashed line is the nonlinear system with
ε = 0.01 and the dotted line is the nonlinear system with ε = 0.03
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