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SUMMARY This research paper describes a theoretical study for the
re-design of the time integration core of COSMO based on a time
integration technique called Dual Time Stepping. This technique has been
successfully adopted in Aerodynamics for the resolution of the unsteady
Navier-Stokes equations, but no previous attempt has been found in
Metereology and Climatology. This preliminary theoretical study aims to
assess the feasibility of implementing the Dual Time Stepping in the time
integration core of COSMO. After the description of the Dual Time Stepping,
the procedure to be implemented is described in comparison with the
current time integration core. The typical convergence acceleration
techniques (i.e. local time stepping, preconditioning, residual smoothing)
that can be combined with the Dual Time Stepping are presented. A simple
test case with a mountain flow is used to obtain a preliminary comparison
between the re-designed and the existing software. This theoretical study
will be followed by an assessment of the proposed numerical scheme that
will space from stability considerations and implementation issues to the
analysis of ideal and real test case for Meteorology and Climatology.
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INTRODUCTION AND MOTIVATIONS

During years, one of the main goal in aero-
dynamics has been the research of efficient
strategies for the time integration of the un-
steady Navier-Stokes equations. Among sev-
eral possibilities, Jameson’s Dual Time Step-
ping (DTS) method [2] is widely used. This
method performs time integration by achieving
successive steady states in a fictious dual time.
As pointed out in [4], a drawback of DTS is that
steady-state iterations must be fully converged
to guarantee a certain time accuracy, thus re-
quiring a large number of dual-time iterations.
The reason for the success of DTS is that it al-
lows to exploit in unsteady calculations all the
convergence acceleration techniques that are
typically used for steady calculations, such as
i) multigrid [5] ii) residual averaging [5, 6] and
iii) local time stepping [7]. The stability and ro-
bustness of the dual-time stepping scheme has
also been verified by other researchers.

No evidence of a previous attempt to use DTS in
Numerical Weather Prediction (WPN) has been
found in literature by the author. The aim of the
present work is to assess the use of the DTS
technique in Meteorology and Climatology, by
its implemention in the COSMO code [1].

Additionally i) the increase of the horizontal res-
olution in the computational grids, ii) the pres-
ence of the orography and the convective ef-
fects that lead to a less pronunced distinction
among the horizontal and vertical modes and iii)
the use of the meteorological softwares for cli-
matic forecasts characterized by extremely long
integration times are paving the way to the use
of implicit time-integration schemes. Hence the
use of a DTS time integration scheme, charac-
terized by reduced limitations on the size of the
physical time step [2], seems to be a well-suited
candidate in challenging the previous limita-
tions and motivates the present research.

This research paper begins with a brief de-
scription of the mode-splitting [10] time ad-
vancement currently used in COSMO, which
adopts different time advancement for the fast
and slow processes in the governing equa-
tions. Subsequently the DTS technique is pre-
sented in details in conjunction with the accel-
eration techniques that will be implemented in
the novel time integration core of COSMO. The
software redesign for the implementation of a
numerical scheme based on the DTS will be
shown in comparison with the current algorithm
flowchart, in order to evidence the substancial
differences among the procedures. Before the
conclusions, a comparative example among the
current time integration scheme and the DTS
scheme will be examined in details.

THE MODE-SPLITTING

Nonhydrostatic compressible models are of in-
creasing interest because of their suitability for
atmospheric simulations over a very wide range
of meteorological phenomena from planetary
down to local scales. Although simplistic at first
glance, considerable difficulties are concealed
in this equation set concerning forward-in-time
integration methods. All possible atmospheric
wave types are involved. Among these there
are acoustic waves and gravity waves as fast
wave types, on one hand, and slow advec-
tive processes connected on the other hand.
The existence of acoustic waves is an obsta-
cle to applying an overall explicit forward time
schemes because it requires very small time in-
crement for a stable integration process. From
the meteorological point of view this wave type
is unimportant and energetically irrelevant, and
from the point of view of an efficient and eco-
nomical numerical scheme, it is a nuisance to
be damped out. Furthermore it is important
that gravity wave processes and their physi-
cal relevance are retained as exactly as pos-
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sible. A common strategy for an efficient nu-
merical scheme in models involving fast and
slow processes is the application of an ex-
plicit time-splitting method as is known since
Marchuk’s work [8], who first introduced it in
the NWP in the field of nuclear physics. On this
ground then, another pioneering work was the
particularly efficient application of the splitting
approach to the nonhydrostatic compressible
equations by Klemp and Wilhelmson [9].

The basic idea of the splitting scheme, namely
using a sufficiently small time step only for the
fast subprocesses and a larger one for the
slow model processes, was then further refined
and investigated for the nonhydrostatic com-
pressible model system in several papers and
overview articles recently [10, 11]. The authors
demonstrate stability analyses for their splitting
schemes with increasing attention for forward
time schemes.

Meanwhile, different nonhydrostatic models ex-
ist as research and operational weather fore-
casting models in which the splitting method
with different modifications has been ap-
plied. Among these models there are the
fifth-generation Pennsylvania State University-
National Center for Atmospheric Research
(NCAR) Mesoscale Model [13], the Advanced
Research Weather Research and Forecast
(WRF)-NCAR model [14], the Advanced Re-
gional Prediction System [16], and COSMO of
the German Weather Service [17] also used in
Climatology.

In COSMO the prognostic equations for the dy-
namical variables, spherical wind components
(u, v and w), and deviations of temperature and
pressure T ′, p′ from a base state, are splitted
into a slow and a fast part. The slow part con-
sists of the advection and Coriolis terms and
tendencies from the physical processes. The
fast parts are the pressure gradient terms and
the working terms in the T ′- and p′-equation,

thus leading to sound expansion, and the buoy-
ancy terms, leading to the expansion of gravity
waves. In the splitting idea of Wicker and Ska-
marock [18] the tendency of the slow processes
is calculated and added in each sub step of the
fast processes.

TIME INTEGRATION

To illustrate the mode-splitting time integra-
tion scheme used in COSMO, we consider the
model equations in the symbolic form:

∂U
∂t

= sU + fU (1)

where U denotes the prognostic model vari-
ables, fU the forcing terms due to the slow
modes and sU the source terms which are re-
lated to the acoustic and gravity wave mode (i.e.
fast modes).

Most time-split nonhydrostatic NWP models
(e.g. ARPS, COAMPS, MM5, COSMO) use a
leapfrog time discretization for the slow modes,
and dissipation terms are commonly integrated
forward in time (see [10]). Many semi-implicit
models also use leapfrog time integration for
the explicit (slow-mode) terms, although a num-
ber of these have switched to forward-in-time in-
tegration schemes. COSMO initially was used
with a leapfrog time discretization but in recent
years the Runge-Kutta schemes have been
widely adopted. Its RK3 scheme, developed
in [18] as the basis for the time-split scheme,
is not a standard Runge-Kutta scheme per se
because, while it is third-order accurate for lin-
ear equations, it is only second-order accurate
for nonlinear equations [19]. The scheme is,
however, more easily adaptable for stable time-
splitting than other Runge-Kutta variants. The
RK3 scheme circumvents three problems in-
herent in the leapfrog scheme. First, while
the leapfrog scheme is second-order accurate,
the scheme requires temporal filtering to pre-
vent decoupling of the timesteps which reduces
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the accuracy to first order. The RK3 scheme
does not require this filtering. Second, the
leapfrog scheme possesses large phase er-
rors compared to the RK3 scheme. Third, the
RK3 scheme allows both neutral and dissipa-
tive (upwind-biased) spatial discretizations for
advection, whereas leapfrog is stable only for
centered (neutral) operators.

Defining the prognostic variables in the
COSMO solver as U = (u, v, w, p′, T ′) and the
model equations as

∂U
∂t

= −R(U) (2)

where R(U) denotes the rigth hand side of the
model equation for U , the RK3 integration takes
the form of three steps to advance a solution
U(t) to U(t+ ∆t):

U∗ = Ut − ∆t

3
R(Ut)

U∗∗ = Ut − ∆t

2
R(U∗),

Ut+∆t = Ut −∆tR(U∗∗)

(3)

where ∆t is the time step for the slow-frequency
modes (the model time step), and superscripts
denote time levels.

As stated before, the high-frequency acoustic
modes are meteorologically insignificant [15]
and would severely limit an explicit RK3 time
step ∆t. To circumvent this time step limitation
COSMO uses a time-split version of the RK3
scheme [18]. The time-splitting technique in-
volves integrating terms associated with acous-
tic modes with smaller time-steps than the low-
frequency (meteorologically significant) modes.
Within the small timestep integration, terms as-
sociated with horizontally propagating modes
are integrated explicitly, while terms associ-
ated with vertically propagating modes are in-
tegrated implicitly. The implicit integration com-
ponent alleviates the severe Courant number

restriction, arising from vertically propagating
acoustic modes when using grids with large as-
pect ratios ∆x/∆z, at the cost of a simple tridi-
agonal matrix inversion.

The Figure 1 shows the three stages of the
Runge-Kutta time integration procedure, where
the blue arrows represent the small time steps
used to advance the fast tendencies of the gov-
erning equations, while the slow tendencies are
kept constant in each RK3 stage, represented
by the red arrows.

Figure 1:
The fast processeses are represented by the blue

advancements using a small time step, while the slow
processes are represented by the red advancements

using the time step given by the RK3 scheme

Source: RK3 Time Integration

DUAL TIME STEPPING (DTS)

The DTS method considers the flow solution
at each time step by recasting the governing
equations as a pseudo steady problem, which
is solved by integrating over an unphysical pa-
rameter called dual time. One of the main ad-
vantages deriving by the use of the DTS is that
it can be easily adapted to pre-existing steady
state solvers and all the convergence acceler-
ation techniques (multigrid, residual averaging,
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local time stepping, etc.) can be reused with-
out significant software modifications. This has
been the key success factor of the DTS method
in Aerodynamics where the steady solvers pre-
ceded the unsteady ones, while in Meteorol-
ogy the unsteady problems were directly chal-
lenged.

The semidiscrete equation for the prognostic
variables (U) can be written in the implicit form:

LtUt+∆t = −R(Ut+∆t), (4)

where Lt represents a time derivative operator.
A second-order backward difference formula is
used for time discretization

LtUt+∆t =
3Ut+∆t − 4Ut + Ut−∆t

24t
. (5)

By indicating with k the dual iteration index, the
DTS considers the residual as follows:

R?k = R(Uk) +
3Uk − 4Ut + Ut−∆t

24t
. (6)

We assume in the following that R(Uk) is eval-
uated using the same equations implemented
in the current time integration core of COSMO.
The residual R?k is such that

lim
k→∞

R?k = 0. (7)

As a consequence, the solution at each time
step of the equation

R?k = 0 (8)

provides the unknown Ut+∆t. A pseudo-time
derivative is introduced in such a way that

∂U
∂τ

= −R?k (9)

The pseudo time τ is a relaxation parameter
and has no physical meaning, not affecting the
converged solution (see Figure 2).

Figure 2:
The blue advancements represents the steps in a fictious
time and are performed with a Runge-Kutta scheme. The

modified residual (R∗k , including the dual time
derivative) is updated each dual time step with the

extimated value of the prognostic variables (Uk). The
red arrow represents the convergence of the variables to
a fictitious dual steady state corresponding to the physical
time level t + ∆t, identified by the condition R∗k = 0 .

Source: DTS Time Integration

DTS WITH EXPLICIT INNER
RELAXATION

The advantage of using the dual time is that
the convergence toward the steady state does
not require time accuracy, so any technique for
accelarating the convergence can be adopted.
Dual time integration is performed by using a
Runge-Kutta scheme. Denoting with the sub-
scripts i, j, k a particular grid point of the inte-
gration domain, an explicit stage of the Runge
Kutta scheme with a local time step 4τijk ap-
plied to equation (9) reads

Uk+ m
q = Uk − αm4τijk R?(k+ m−1

q ) m = 1...q,

(10)
where q is the number of stages and αm is the
coefficient of the m−stage. By expliciting the
definition of the residual R? in equation 6 we
have

Uk+ m
q = Uk+

−αm4τijk(
3Uk+ m−1

q − 4Ut + Ut−∆t

24t
+

+R(Uk+ m−1
q ))

(11)
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According to Melson [20], if the term Uk+ m−1
q

appearing on the right-hand side of equation 11
is evaluated at the unknown stage m, the sta-
bility restrictions of the scheme are alleviated.
Thus, we have(

1 +
34τijk

24t
αm

)
Uk+ m

q = Uk+

−αm4τijk

(
−4Ut + Ut−∆t

24t
+R(Uk+ m−1

q )

)
.

(12)

Finally, by adding and subtracting the same
term evaluated at stagem−1 the expression of
R? on the right-hand side is recovered. Equa-
tion 12 becomes:(

1 +
34τijk

24t
αm

)
Uk+ m

q = Uk+

+
34τijk

24t
αmUk+ m−1

q −4τijkαmR?(k+ m−1
q ).

(13)

LOCAL TIME STEPPING

The use of local time steps [7] allows the sig-
nals propagate at speeds in proportion to cell
sizes. For steady state calculations, a faster
expulsion of disturbances can be achieved by
locally using the maximum allowable time step.
Using this accelaration technique, the local time
step ∆τijk is computed based on the local di-
mension of the grid, the magnitude of the local
velocity and the Courant-Friedrichs-Lewy (CFL)
number.

IMPLICIT RESIDUAL AVERAGING

This technique was first introduced by Lerat
[24] and later implemented on the Runge-Kutta
Stepping scheme by Jameson [25] in order to
extend the stability limit of the scheme. CFL
number is increased by replacing the residual
at each cell by a weighted average of residuals
at neighboring cells. This is done at each stage

of the Runge-Kutta Stepping scheme before
the solution is updated. Linear stability anal-
ysis has shown that the Runge-Kutta scheme
with implicit residual smoothing may be made
unconditionaly stable provided that the param-
eter used for the smooting, RESAV , is suffi-
ciently large [25]. As long as RESAV is not
too large the use of implicit residual smoothing
does not upset the formal second-order accu-
racy in space. Since the smoothing is done in
space it has no effect on the temporal accu-
racy of the scheme. To date implicit residual
smoothing has been used in conjunction with
a spatially varying time step to accelerate con-
vergence to a steady state.

PRECONDITIONING

Preconditioning is simply a mathematical tool
used to remove stiffness from ill-conditioned
systems of equations and involve the alteration
of the time-derivatives used in time-marching
CFD methods with the primary objective of en-
hancing their convergence. The main difficulty
associated with the numerical simulation of the
unsteady equations is the degradation of con-
vergence at very low flow speeds: there is
a huge disparity between the convective and
acoustic eigenvalues in this system of equa-
tions because the speed of sound is much
larger than the convective velocity. Hence, time
step size in time marching schemes is limited
by acoustics instead of convection, even though
the former is not relevant in most low speed
flows (Turkel [21]). Premultiplying the time
derivative changes the eigenvalues of the sys-
tem and accelerates the convergence to steady
state:

Γ · δU
δτ

= R(U) (14)

where Γ is a preconditioning matrix as defined
in Turkel [22, 23].
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MULTIGRID

Multigrid techniques [3, 2] allow global error to
be addressed by using a sequence of succes-
sively coarser meshes. This method is based
upon the principle that global (low-frequency)
error existing on a fine mesh can be repre-
sented on a coarse mesh where it again be-
comes accessible as local (high-frequency) er-
ror: the clear advantage is that the numerical
schemes are more efficient in damping high fre-
quency errors [27, 28, 29].

BOUNDARY CONDITIONS

In this section a short description of the bound-
ary conditions adopted by COSMO is pre-
sented. Non-penetrative boundary conditions
are imposed at the upper boundary that is con-
sidered a rigid lid by setting the contravari-
ant vertical velocity to zero. Since the lower
boundary (that follows the surface terrain) is
non-penetrative with respect to grid-scale mass
fluxes, the contravariant vertical velocity must
vanish. Here for the components of the hor-
izontal velocity, the temperature and the wa-
ter substances, friction boundary conditions are
imposed.

In COSMO enhanced damping near the top
of the model domain (i.e. damping layer) is
accomplished by Rayleigh friction terms which
are added to the right hand side of the prog-
nostic equations for momentum, temperature
and pressure perturbation. Thus, the COSMO
formulation of the damping layer tends to re-
store the externally specified boundary fields
near the top of the domain.

When we use a regional model for NWP pur-
poses, information on the variables at the lat-
eral boundaries and their time evolution must
be specified by an external data set. These
external data may be obtained by interpola-
tion from a forecast run of another model or

from a coarser resolution run of COSMO. Time
dependent relaxation boundary conditions can
then be used to force the solution at the lat-
eral boundaries using the external data. Nest-
ing a high-resolution limited area model in a
low-resolution driving model causes numerical
problems, since the time evolution of the model
variables is based on a system of equations
that can differ from that of the driving model.
This leads to the generation of numerical noise,
which can propagate from the lateral bound-
aries inward to the centre of the model domain.
A simple and effective solution to this problem is
to apply a sponge to the model variables within
a relaxation zone close to the boundaries. In
this zone, the variables of the high- resolution
model are gradually modified to blend them with
the driving model variables. In this way, the in-
formation transfer problem is cured, since infor-
mation near the lateral boundaries is no longer
generated by the high-resolution model but de-
termined by the values of the low-resolution
driving model.

The periodic boundary condition assumes that
the solution of the model equations replicates
itself indefinitely outside of the computational
domain. Thus, the solution at a distance d to
the west (north) of the computational domain
western (northern) boundary equals the solu-
tion at the same distance d to the west (north)
of the eastern (southern) boundary. Further
informations on the treatment of the boundary
conditions can be found in the implementation
details of the software [1].

IMPLEMENTATION DETAILS OF THE
RUNGE-KUTTA SCHEME

The following steps are performed in the routine
src runge kutta.f90 of COSMO:

1. At the beginning the tendencies of the
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Figure 3:
Original design of the COSMO time integration core

Source: RK3 Flow Chart

Rayleigh friction layer [1] and the ten-
dencies of the physical parameterizations
of radiation, convection and the explicit
parts of the turbulence (if activated) are
summed up

2. The implicit (i.e. using a Crank-Nicholson
scheme) vertical turbulent tendencies are
added to the previously evaluated tenden-
cies

3. Start of the Runge-Kutta substeps:

(a) calculate the horizontal advection
tendencies

(b) if the implicit vertical advection is
used then, using the previously cal-
culated tendencies from horizon-
tal advection and the above men-
tioned tendencies due to physics
and adiabatic processes of the dy-
namic variables, the vertical advec-
tion is solved by a vertically implicit
scheme.

(c) The complete slow tendencies are
inserted into the fast waves solver

4. end of the Runge-Kutta substeps.

5. Advection of the moisture fields (qx),
aerosol, gaseous components and the
Turbulent Kinetic Energy (TKE) if active

6. In an operator splitting manner perform
the horizontal diffusion of qx and the im-
plicit vertical diffusion of qv (specific wa-
ter vapor content), qc (specific cloud wa-
ter content), qi (specific cloud ice content)
and TKE

7. apply artificial horizontal diffusion [1] to
the prognostic variables

8. call the saturation adjustment [1]

DTS REDESIGN OF THE TIME
INTEGRATION CORE

In this section a redesign of the time integration
core of COSMO is proposed with comparison
to the previosly shown scheme. The follow-
ing steps are performed in the novel routine
src DTS integration.f90 of COSMO:

1. At the beginning the tendencies of the
Rayleigh friction layer and the tendencies
of the physical parameterizations of radi-
ation, convection and the explicit parts of
the turbulence (if activated) are summed
up

2. Evaluate the part of the residual of the
prognostic variables (see Equation 6)
which does not depend on the next time
level (Ut+∆t)

3. The implicit (i.e. using a Crank-Nicholson
scheme) vertical turbulent tendencies are
added to the previously evaluated tenden-
cies
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Figure 4:
DTS re-design of the COSMO time integration core

Source: DTS Flow Chart

4. Start of the Dual Time substeps ( while
a convergence treshold or the maximum
number of DTS steps is reached):

(a) Evaluate the local time step

(b) Start of the Runge-Kutta substeps:

i. (might be only in the first RK
substep) calculate the horizon-
tal advection tendencies

ii. (might be only in the first RK
substep) if the implicit vertical
advection is used then, using
the previously calculated ten-
dencies from horizontal advec-
tion and the above mentioned
tendencies due to physics and
adiabatic processes of the dy-
namic variables, the vertical ad-
vection is solved by a vertically
implicit scheme.

iii. evaluate the complete fluxes
(adding the previously evaluated

slow modes to the fast modes)
of u and v using an explicit
scheme

iv. evaluate the complete fluxes
(adding the previously evaluated
slow modes to the fast modes)
of w, pp and T using an explicit
scheme instead of the implicit
Crank-Nicholson scheme used
in the original fast solver

v. apply the Rayleigh damping to
the flux of the w-velocity and the
lateral BCs to all the prognostic
variables

vi. complete the residuals of the
prognostic variables by adding
the previously evaluated com-
plete fluxes to the incomplete
residuals containing the fixed
part of the time derivative (see
step 3)

vii. apply the preconditioning

viii. apply the residual averaging

ix. update the prognostic variables

(c) end of the Runge-Kutta substeps

5. end of the Dual Time substeps with the
convergence to a fictitious steady state.

Advection of the moisture fields (qx),
aerosol, gaseous components and the
Turbulent Kinetic Energy (TKE) if active

6. In an operator splitting manner perform
the horizontal diffusion of qx and the im-
plicit vertical diffusion of qv (specific wa-
ter vapor content), qc (specific cloud wa-
ter content), qi (specific cloud ice content)
and TKE

7. apply artificial horizontal diffusion to the
prognostic variables

8. call the saturation adjustment
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TEST CASE

As the aim of this work is to assess the feasi-
bility of a DTS time integration core in COSMO,
the solutions obtained with a preliminary ver-
sion of DTS and the original code for a simple
test case of mountain flow are compared. The
mountain ridge has a gaussian shape

h(x) = He−
x2

a2 log2 (15)

where H is the mountain maximum height and
a (the mountain width) is the horizontal distance
from the mountain top where the height is H/2.

Figure 5:
Grid adopted for the mountain flow and detail of the
SLEVE vertical coordinates near the mountain ridge

Source: Computational domain

The computational domain is 250 km large in x-
(horizontal) direction and 19.5 km in z-(vertical)
direction. The mountain ridge is located in the
middle of the longitudinal field, as shown in Fig-
ure 5. Keeping in mind the setting described in
Table 1, first simulations have been performed
with the original COSMO code.

The w-velocity component after to 50 hours of
simulation is shown in Figure 6. It is possible to
locate the position of the mountain in the middle
of the domain from the waves.

Table 1
Simulation parameters: mountain flow

Value

x-resolution, ∆ x 1 [km]
y-resolution, ∆ y 1 [km]
z-resolution, ∆ z 0.1 [km]
No of cells in x-direction 250
No of cells in y-direction 7 (2d case)
No of cells in z-direction 195
time step 10 [s]
simulation time 50 [h]
advection order 5
divergence damping 0
rayleigh damping Active for z > 11000m
time integration scheme RK3
free-stream velocity 10 [m/s]
mountain height, H 300 [m]
mountain width, a 10 [km]

Figure 6:
Contour of w-velocity

Source: Original COSMO

In the case of the DTS simulations the addi-
tional settings required are summarized in Ta-
ble 2 . The w-velocity component obtained with
the DTS version of the COSMO software up to
50 hours of simulation is shown in Figure 7 .

The threshold chosen for the convergence of
the dual time iterations is the decay of two (log-
aritmic) levels in the maximum residual of the w-
component of the velocity, as reported in Figure
8. It is possible to notice the typical behaviour
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Table 2
DTS additional settings

Value

CFL of the DTS time integration 10
No of Runge-Kutta stages 5
Maximum number of DTS iterations 200
Residual Decay Threshold (logaritimic) 2
Parameter for residual smoothing, RESAV 2
Preconditioning Active
Local time stepping Inactive
Multigrid Inactive

Figure 7:
Contour of w-velocity

Source: DTS COSMO

Figure 8:
Convergence history in the dual time

Source: DTS COSMO

of the DTS integration, where each time level
is considered as the steady-state solution of a
fictitious integration using a pseudo-time. The

average number of DTS iterations needed to
achieve the two-levels decay is 17 in the re-
ported case, but further achievements are ex-
pected using a local time step and the multigrid
technique.

CONCLUSIONS

In this paper a DTS time integration core is pro-
posed for COSMO. The paper describes the
re-design of the existing routines needed to
successfully implement this technique. In the
proposed configuration, the convergence ac-
celeration techniques (i.e. local time stepping,
multigrid, preconditioning, residual smoothing)
for steady solvers can be implemented: a pre-
liminary version of the new solver using precon-
ditioning and residual smoothing was tested. In
future works the numerical perfomances of the
DTS will be assessed in comparison with the
operational RK2 scheme. The proposed test
case shows that the DTS integration is able to
give results close to the solution obtained with
the existing COSMO, leading the author to fur-
ther investigate the advantages and disadvan-
tages of the proposed methodology with real
test cases in Metereology and Climatology.
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