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SUMMARY The Kalman filter (KF) dates back to 1960, when
R. E. Kalman [4] provided a recursive algorithm to compute the solution of a
(linear) data filtering and prediction problem, proving to be much more
efficient than the N. Wiener’s approach, introduced in 1949 in [5].
Data filtering is a simple example of Data Assimilation problem which can be
regarded as a least squares approximation problem and, more precisely, as
an inverse ill-posed problem. In this paper we review and discuss KF in the
context of numerical regularization methods aimed to solve ill-posed inverse
problems such those arising in Data Assimilation applications.
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INTRODUCTION AND HISTORY

In the past 20 years Data Assimilation (DA),
used in principle only in atmospheric models,
has become a main component in the develop-
ment and validation of oceanographic models
and, more generally, in the validation of the
mathematical models used in meteorology,
climatology, geophysics, geology and hydrol-
ogy (often these models are referred to with
the term predictive to underline that these are
dynamical systems).
The aim of the ”data assimilation scientific
community” is to ”accost” the data acquired
experimentally (in vivo) to those obtained
numerically (in vitro) in order to improve the
understanding of the surrounding ecosystem.

Predictive models are described by using
evolutionary differential equations. Predictions
are obtained by running "computational sim-
ulations", hence a small perturbation on data
may propagate on the solution. Since this
solution is used, in turn, as initial condition
of a next time prediction, propagation can
lead to completely unreliable solutions, even
after a few time steps. This catastrophic error
amplification was already known in 1960 to
Edward Lorenz (1917-2008, founder of chaos
theory). Lorenz convinced himself that the
models used to describe climate changes
provide solutions unpredictable: variations of
the initial parameters on the third or fourth (sig-
nificant) digit produced enormous disruption
in the solution. The so strong dependence
on the initial parameters was called butterfly
effect:: ”Does the flap of a butterfly’s wings in
Brazil set off a tornado in Texas?” was the title
of a conference at the American Association
for the Advancement of Sciences held by E.
Lorenz in 1979.

In this context DA corrects, periodically, the

initial value of a predictive model using the
information provided by the experimental
measurements, or by observations of the state
system acquired in the same time of the initial
condition.

Assimilate the data (from the Latin ”assimilate”
= make similar) just means, in this context, to
make as similar as possible the observed data
to those provided by the simulation models.
Therefore, we may introduce the DA mathemat-
ical problem as an Approximation problem and,
in particular, as a Best Approximation problem.
Let us start by giving the following definition of
DA, even if in a simplified version [1]:

Definition 0.1 (Data Assimilation)
Given a dynamical system, an estimate of the system
state at a fixed time, and an experimental measure of
the system state, to compute the Best Approximation
of the system state at each time.

Let x be the vector representing the system
state, y the vector of experimental mea-
surements of the system state, using the
Euclidean norm to measure the distance be-
tween x and y (for details, see the Appendix),
the DA problem can be formulated hereafter as:

Definition 0.2 (Data Assimilation as Best

Approximation)
Given two vectors x and y, to compute the vector x̃
obtaining the minimum distance from x and y.

In the context of DA, this solution is named
"analysis".

Here after we will refine this definition of DA,
and we will give a precise characterization of
the "data filtering", on which R.E. Kalman be-
gan to work in 1960, in the context of inverse
and ill posed problems.
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THE KALMAN PROBLEM: AN INVERSE
ILL POSED PROBLEM

The term ”filtering” originates from the operation
separating the information from the noise/error:

filter 
 operator

which separates data from noise

Let us consider the Kalman problem [4]:

Definition 0.3 (Kalman)

Let us consider the two functions:

xk(t) : t ∈ [0, T ] −→ xk(t), k = 1, 2.

We assume that x1(t) describes a phenomenon that
we are observing while the other, x2(t), is the addi-
tive noise. Suppose that their sum:

y(ti) = x1(ti) + x2(ti), ti ∈ [0, T ]

is known in a finite number, let’s say m, of values
ti, i = 1, . . . ,m. Set a value of t in the same interval
of the observations, which we denote by t̃ ∈ [0, T ].
Kalman poses the following:

Problem 0.1 is it possible to calculate an estimate
of x1( t̃ ) from this information? if so, how can it be
done?

In case of m = 2, let

yi = y(ti) i = 1, 2

and
εi = x2(ti) i = 1, 2

the Kalman problem can be rewritten in this
way:

Definition 0.4 (Kalman)
Given the points

(ti, yi), i = 1, 2 ti ∈ [0, T ]

where
yi = x1(ti) + εi,

to compute x1(t̃), t̃ ∈ [0, T ].

Depending on the position of t̃ with respect to
t1 and t2 in [4] this problem was characterized
as follows:

Definition 0.5 If

t1 < t̃ < t2: data smoothing (fitting of data)

t̃ = ti: data filtering

t̃ > {t1, t2}: data prediction (data mining)

and, in general, it was called Data Estimation, or
Data Assimilation.

The Kalman problem is an
identification problem [6], being in particu-
lar an approximation problem:

Definition 0.6 (Approximation problem)
Given the points (ti, yi) where yi = y(ti), i =

1, . . . ,m we aim to determine a function, denoted
by x(t), as a fitting of the points. In particular, since
the values yi are affected by error (not negligible)
we search for a function x(t) which is ”slightly de-
viated” from the values yi.

The function x must be such that at ti its
distance from the assigned values (ie ‖εi‖ =

‖x(ti)− yi‖) is small or minimal, i.e.:

x = argmin‖x(ti)− yi‖

This is called a denoising problem: to reduce
the noise (εi) given (x1(ti)).
Hence, the Kalman problem, given in Problem
0.1, is denoising problem: the function x1 is
the model approximating the points (ti, yi), i =

1, 2. It is obtained by requiring that the distance
between x1(ti) and yi is minimum, i.e.:

x1 = argmin‖(ε1, ε2)‖ =
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1It is worth noting that
the denoising problem

can indeed be
regarded as an inverse

problem where the
operator is the identity

CMCC Research Papers

= min ‖(y1 − x1(t1), y2 − x1(t2)‖.

REMARK: The data approximation -

in the sense of least squares -

goes back to C. F. Gauss which,

although published later (in

1805), he had already used in

1795 at age 18, in his study of

the orbits of the planets. Gauss

states that[3]:

"[...] measurements are affected by er-
rors and so are all obtained from these
computations, therefore, the only way
to get information about the problem at
hand is to compute an approximation
of the nearest and most practicable so-
lution possible. This can be done by
using a suitable combination of the ex-
perimental measurements, which must
be in number than those of the unknown
parameters, and starting from an ap-
proximate knowledge of the orbit (to be
calculated), which will be corrected in
order to describe as accurately as pos-
sible the experimental observations."

Gauss focused on the main

ingredients needed for the

computation of the solution of

an approximation problem. Indeed,

he refers to a solution "as close

as possible" and to a calculation

"affordable", through:

1. the use of experimental

measurements in a number

higher than that of the

unknown parameters;

2. the estimation of the model

linking the quantities and the

known unknowns;

3. the calculation of the minimum

distance between the known

values and those obtained by

solving the model.

It is possible to identify here some features
common to the Kalman problem, as for exam-
ple, the time dependence of the experimental
measurements.

Careful analysis reveals that the operator map-
ping data (the measures yi) to the unknown
(the function x1(t)) is known, being the sum of
x1 and x2. In other words, we can say that the
Kalman problem is an inverse problem1 .

Definition 0.7 (Kalman problem as inverse prob-
lem)
Let S:

S : y1(t)→ x1(t) + ε(t)

the Problem 0.1 can be written in the equivalent
form:

ε is known as error function

Problem 0.2

P : x1(t)→ y1(t) = S(x1)

whence
x1(t) = S−1[y1(t)]

So, the computation of x1 requires inverting the
operator S.

So, the computation of x1(ti), only knowing
y1(ti), admits infinite solutions (one equation
and two unknowns). This means that the
operator S that relates yi to x1(ti) is not
invertible, and the Kalman problem, as given in
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Problem 0.2, is an ill-posed inverse problem.

REMARK: The characterization of

ill-posed mathematical problems,

dates back to the early years of

the last century (J. Hadamard,

1902) and reflects the belief

of the mathematicians of that

time to be able to describe in

a unique and complete way each

physics problem. As a result,

a problem was ill posed when,

from the mathematical point

of view, it presents anomalies

and for this reason it could

certainly not correspond to a

physical event. Therefore, for

some years, ill-posed problems

were not taken into consideration

by mathematicians. The first

comprehensive treatment of

ill-posed problems, it is due

to A. N. Tikhonov, in 1965,

which described the concept

of solution for ill-posed

problem and introduced the

regularization methods [10]. A

regularization method computes as

(approximation of) the solution

of an ill-posed problem, the

best possible. This solution

is obtained by solving a best

approximation problem by adding

to the minimization of the error,

resulting from the problem, one

or more constraints on the desired

solution, arising from additional

information. In other words, a

regularization method replaces

the problem with one another,

well posed, whose solution, under

certain assumptions, should be

close to the ’’ideal’’ solution to

the initial problem.

THE KALMAN FILTER: A NUMERICAL
METHOD TO SOLVE THE DA INVERSE
PROBLEM

Hereafter we will discuss KF as an inverse ill
posed problem, through some case studies,
each obtained as a refinement of the one posed
by Kalman in 1960.

CASE STUDY 1:

Let x̂ be the solution of the normal equations
arising from the least-squares problem treated
by CF Gauss (see Appendix, (20)):

x̂ = (ATA)−1AT b

Suppose we have already solved the system
(20) and that we have computed the solution
x̂. The following problem provides a first exam-
ple of Data Assimilation which we aim to solve
appling the Kalman Filter:

Problem 0.3 We consider the linear system (20)
with the addition of a new equation:

aTx = b̃

So, the system (20) becomes:

Mz = p (1)

where

M =

[
A

aT

]
∈ <(m+1)×n (2)

and

p =

[
b

b̃

]
∈ <(m+1)×1 (3)

The system (10) is over-determined (because m +

1 > n), then we aim to calculate the least square
solution.
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The least square solution of the system (10) is
such that:

z = argminz‖Mz − p‖2

and it is obtained by solving the normal equa-
tions:

MTMz = MT p (4)

or else:
z = (MTM)−1MT p

Observe that this formulation, although formally
correct, leads to an inefficient computational
approach because it does not use the vector x̂
which was already computed. We analyze in
details the time complexity needed for solving
system (4).

Let Tnormal denote the algorithm complexity re-
quested for solving system (4). It is due to the:

1. construction of normal equations (4):

(a) calculation of MTM :
Tcostr(MTM) = O((m + 1) × n

2

)

flop,

(b) calculation of MT p : Tcostr(MT p) =

O(n× (m+ 1)) flop

2. solution of system (4): T sol = O(n3) flop

for an amount of:

Tnormal = Tcostr + Tsol =

= O((m+ 1)× n
2

+ n× (m+ 1)︸ ︷︷ ︸
passo1

+ n3︸︷︷︸
passo2

)

Computing Tnormal we observe that:

(a) Since

MTM = ATA+ aaT

it is:

Tcostr(MTM) = O((m+ 1)× n
2

) =

= O(m× n2︸ ︷︷ ︸
ATA

+ n2︸︷︷︸
aaT

) flop

Standard

Tcostr (m+ 1)× n
2
+ n× (m+ 1)

Tsol n3

Table 1: Algorithm complexity of the construction
and resolution of the normal equations (4).

(b) Since

MT p = AT b+ ab̂

we have:

Tcostr[MT p] = O(n× (m+ 1)) =

= O(n×m︸ ︷︷ ︸
AT b

+ n︸︷︷︸
ab̂

) flop

So, assuming that the normal equations
ATAx = AT b have already been constructed
and solved, it follows that:

Tconstr = O((m+ 1)× n2 + n× (m+ 1)) =

= O(m× n2︸ ︷︷ ︸
ATA

+n2 + n×m︸ ︷︷ ︸
AT b

+n)

whence

Tconstr = O(n2 + n) flop

As shown in Table 2, we have still assumed
that the solution of the normal equations has
a time complexity of O(n3) flops. To evaluate
the savings in solving the normal equations (4)
it is necessary to analyze how to calculate z =

(MTM)−1MT p using x̂ = (ATA)−1AT b.
To this end, we observe that system (4) derives
from the problem:

P : z = argminx{‖Ax− b‖2 + ‖aTx− b̂‖2}
(5)
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standard updating

Tcostr (m+ 1)× n
2
+ n× (m+ 1) n2 + n

Tsol n3 n3

Table 2: Algorithm complexity of forming the
normal equations (4) in the standard formulation
(standard) and avoiding to calculate ATA and

AT b (updating).

in which the part relating to the matrix A is sep-
arated from that related to the new equation. In
other words, we are looking for a solution that,
in addition to be solution of (20), minimizes the
residual of the new equation, too, as stated in
the following:

Problem 0.4 Let x̂ = (ATA)−1AT b be the least
squares solution of the system Ax = b. Calculate
the least squares solution of the system:

Mz = p (6)

with

M =

[
A

aT

]
∈ <(m+1)×n (7)

and

p =

[
b

b̃

]
∈ <(m+1)×1 (8)

means to solve the following constrained least
squares problem:

P : z = argminx{‖Ax− b‖2 + ‖aTx− b̂‖2}
(9)

Problem P expresses the system (7) as a con-
strained least-squares approximation problem.
The credit of R. E. Kalman was to have identi-
fied such relation and to have proposed a nu-
merical method for the computation of z - so-
lution of the system (7) - as a solution of the

problem (9):

Propostion 0.1 (Kalman Filter) Let

Mz = p

a linear system, where

M =

[
A

aT

]
∈ <(m+1)×n (10)

and

p =

[
b

b̂

]
∈ <(m+1)×1 (11)

Let x̂ = (ATA)−1AT b be the least squares solution
of the system:

Ax = b

and let F be the operator corresponding to

the Kalman Filter, defined as:

F : x 7→ F(x) = x̂+ k(̂b− aTx)

where k ∈ <n×1 is:

k =
1

1 + aT (ATA)−1a
(ATA)−1a.

The least squares solution of the system Mz = p, ie
the vector

z̃ = (MTM)−1MT p

is:
z̃ = F(x̂) (12)

In addition:

(MTM)−1 = [I − kaT ](ATA)−1 (13)

Before proving the proposition we give the
following:

Lemma: Let I be the identity matrix and c, d two
vectors then:

[I + dcT ]−1 = I + kdcT
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where
k = −(1 + cT d)−1

Dim.:
To prove the result, we show that

[I + dcT ][I + kdcT ] = I

assuming
k = −(1 + cT d)−1

We have:

[I+dcT ][I+kdcT ] = I+kdcT +dcT +dcT kdcT =

= I+kdcT +dct+kd(cT d)cT = I+[k(1+cT d)+1]dcT

The latter expression is equal to the identity
matrix I because

k = −(1 + cT d)−1

♣

Corollary: Let B be an invertible matrix, we have:

B−1[I + dcT ]−1 = B−1 + kB−1dcT

♣
Also, if you put eT = cTB it follows:

[B + dcT ]−1 = B−1 + kB−1deTB−1

We are now in a position to prove Proposition
2.3:

proof Proposition 2.3: Compute

ẑ = (MTM)−1MT p .

From the solution of MTM and MT p we have:

MTM = ATA+ aaT

and
MT p = AT b+ ab̂

so:
z = (ATA+ aaT )−1(AT b+ ab̂)

We apply Lemma with d = e = a andB = ATA:

(ATA+aaT )−1 = [(ATA)−1+k(ATA)−1aaT (ATA)−1]

where:

k = k =
1

1 + aT (ATA)−1a
(ATA)−1a

performing products and considering that

x = (ATA)−1AT b

follows the thesis. ♣

In conclusion, KF aims to calculate the solution
of system (4), performing the following steps:

k =
1

1 + aT (ATA)−1a
(ATA)−1a (14)

x̃ = x+ k(̂b− aTx) (15)

We compute the time complexity needed for the
calculation of x̃ in (15):

1. computation of B = (ATA) (BLAS3:
product of matrices): O(n2m) flop

2. computation of B−1 (BLAS3: matrix in-
version): O(n3) flop

3. computation of a′ = Ba (BLAS2: matrix
vector product): O(n2) flop

4. computation of a′′ = aTa′ (BLAS1: prod-
uct between vectors): O(n) flop

5. computation of 1+a′′(BLAS1: sum of vec-
tors): O(n) flop

6. computation of p = 1
1+a′′ (BLAS1: con-

stant × vector product ): O(n) flop

7. computation of k = p · a′ (BLAS1: con-
stant × vector product): O(n) flop
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obtaining a total of:

Tcostr k(n) = n3 + n2m+ n2 + 4n

For the computation of k in (14):

1. computation of u = aT x̂ (product between
vectors): O(n) flop

2. computation of u′ = b̂− u (difference be-
tween two constants): O(1) flop

3. computation of ku′ (product between con-
stant): O(1) flop

4. computation of x̃ = x+ku′ (constant vec-
tor summ): O(n) flop

obtaining a total of

Tx̃ = 2n

Therefore, we get:

Tsol kalman(n) = Tcostr k + Tx̃ =

= O(n3 + n2m+ n2 + 6n)

If m >> n, the performance gain is significant.

CASE STUDY 2:

We consider the problem:

P : z = argminx{‖Ax− b‖2 + ‖aTx− b̂‖2}
(16)

Assuming that we add to the system Ax = b, s
equations where s > 1, the problem (16) is well
defined if we assume that:

1. b̂ ≡ d ∈ <s,

2. aT ≡ V ∈ <s×n,

Standard

Tcostr (m+ 1)× n
2
+ n× (m+ 1)

Tsol n3

Kalman Complete

Tcostr n3 + n2m+ n2 + 4n

Tsol 2n

Kalman update

Tcostr n2 + 4n

Tsol 2n

Table 3: Time complexity of the construction and
resolution of the system of normal equations (4) in
a standard formulation, with KF in which you need

to recalculate all operators (Kalman Complete)
and Kalman in which you are only updating the

solution (Kalman update).

The least square problem (16) becomes:

P : z = argminx{‖Ax− b‖2 + ‖V x− d‖2}
(17)

This is a DA problem which consists of a model
+ constraint, where the model is expressed by
the systemAx = b and the constraint equations
by the system V x = d.

The following proposition applies KF to the DA
problem in the form (17),

Propostion 0.2 Let us consider the DA problem:

P : z = argminx{‖Ax− b‖2 + ‖V x− d‖2}
(18)

where A ∈ <m×n, b ∈ <m, V ∈ <s×n, d ∈ <s, let
x̂ = (ATA)−1Ab be the least square solution of the
system Ax = b. The solution of the problem (18)

ẑ = (ATA+ V TV )−1(AT b+ V T d)

is:
ẑ = F(x̂)
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with
F : z 7→ x̂+K(V x− d)

and

K =
1

I + V (ATA)−1V
(ATA)−1V T

.

Proof: The proof follows the steps shown for
the Proposition 2.3 with the difference that
V ∈ <s×n and d ∈ <s. ♣

CASE STUDY 3:

Observation: To compute the vector minimizing the
residual r = Ax − b is equivalent to compute the
vector of minimum distance from x̂, or:

min ‖Ax− b‖2 ⇔ min ‖x− x̂‖2

with x̂ = (ATA)−1AT b (just replace the expression
of x̂ in the Euclidean norm and multiply vectorsx−x̂
and (ATA)−1AT ), so problem (18) is equivalent to
that described below:

P : z = argminx{‖x− x̂‖2 + ‖V x− d‖2}

Although, from a mathematical point of view, the
problem is the same, this formulation highlights
the fact that the vector x̂ is available or has
been calculated. In other words, it appears more
evident the characteristic of the least squares
approximation problem that we are solving using
KF: to compute z as an upgrade of the solution x̂.
With this formulation, the derivation of the KF
is straightforward:

Propostion 0.3 Given the following problem:

P : z = argminx{‖x− x̂‖2 + ‖V x− d‖2}

where x̂ = (ATA)−1AT b, then we have:

z = x̂+K(V x̂− d)

and
K = V T (I + V TV )−1

Proof: Explaining the euclidean norm, we
have:

{‖x− x̂‖2 + ‖V x− d‖2} =

= (x− x̂)T (x− x̂) + (V x− d)T (V x− d)

Performing products, it follows that:

(x− x̂)T + (V x− d)T (V x− d) =

= xTx− xT x̂− x̂Tx− x̂T x̂+

+xTV TV x− xTV T d− dTV x+ dT d

computing the derivative with respect to x, we
get:

2x− 2x̂+ 2V TV x− V T d+ dTV ;

by requiring that this derivative is zero, we ob-
tain z:

2(V TV + I)z = 2V T d+ 2x̂

Adding and subtracting V TV x̂, it follows:

(V TV + I)x = V T d+ x̂+ V TV x̂− V TV x̂

or:

(V TV + I)x = (I + V TV )x̂+ V T (V x̂− d),

multipling (V TV + I) at the left and at the right:

z = x̂+ (I + V TV )−1[V T (V x̂− d)]

or, posed:

K = (I + V TV )−1V T

we finally have:

z = x̂+K(V x̂− d)

♣

In this form, the calculation of z is the update of
the vector x̂.
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CASE STUDY 4:

We consider hereafter the following:

Propostion 0.4 Given the least squares problem:

P : z = argminx{‖x− x̂‖B + ‖V x− d‖R}

where instead of the standard Euclidean norm we
use the weighted Euclidean norm:

‖z‖S = zTSz

(norm induced by the Mahalanobis distance (cfr.
Appendix) ) where as the weight matrix S we usedR
andB,two symmetric and positive definite matrices.
If x̂ = (ATBA)−1AT b, then:

z = x̂+K(V x̂− d)

with:
K = RV T (B + V TRV )−1

Proof: Explaining the weighted euclidean
norm, we have:

{‖x− x̂‖B + ‖V x− d‖R} =

= (x− x̂)TB(x− x̂) + (V x− d)TR(V x− d).

Performing products, it follows that:

(x− x̂)TB(x− x̂) + (V x− d)TR(V x− d) =

= xTBx− xTBx̂− x̂TBx− x̂TBx̂+

+xTRV TV x− xTRV T d− dTRV x+ dTRd.

By computing the derivative with respect to x,
it follows:

2Bx− 2Bx̂+ 2V RV x− V TRd+ dTRV

and by requiring that this derivative is zero, so
we obtain z:

2(V TRV +B)z = 2V TRd+ 2Bx̂.

Adding and subtracting V TRV x̂:

(V TRV+B)x = V TRd+Bx̂+V TRV x̂−V TRV x̂

or:

(V TRV +B)x = (B+V TRV )x̂+V TR(V x̂−d)

multipling (V TRV + B) at the left and at the
right:

z = x̂+ (B + V TRV )−1[RV T (V x̂− d)]

or, posed:

K = (B + V TRV )−1RV T

we finally have:

z = x̂+K(V x̂− d)

♣

CASE STUDY 5:

KF is also referred to as predictor-corrector or
predict (using an appropriate model) - correct
(with measures). Here after we will show where
does this terminology illustrating an application,
which is the classic application where this op-
erator is used:

Definition 0.8 Let ti ∈ [0, T ], i = 1, . . . , n, we
want to compute a vector of n components x(ti) ∈
<n such that:

x(ti) = Φ(ti−1, ti)x(ti−1) + u(ti) (model)

and such that:

y(ti) = V (ti)x(ti) + v(ti) (misure)

where, for all fixed values of i:

1. Φ is a known matrix of dimension n×n, said
transition matrix,

2. u(ti), v(ti) ∈ <n are unknown vectors of di-
mension n, of random variables with Gaus-
sian distribution with covariance matrix U

and R respectively.
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3. V (ti) is a known matrix of dimension p × n,
with p� n,

4. y(ti) is a known vector of dimension p,
withp� n.

This problem is equivalent to compute z(ti),
such that it is minimum of:

F : ‖x(ti)− Φ(ti−1, ti)x(ti−1)‖U+

+‖y(ti)− V (ti)x(ti)‖R
with ‖ · ‖U and ‖ · ‖R rules induced by the Ma-
halanobis distance (cfr. paragraph 3) defined
as:

‖z‖S = zTSz

We have already seen that the solution is:

z(ti) = x̂(ti) +K[y(ti)− V (ti)x̂(ti)]

with
x̂(ti) = Φ(ti−1, ti)x(ti−1)

or x̂(ti) is the solution of the model (for this
reason we say that it is the forecast) and
z(ti) is the correction of it obtained using the
measures y(ti).

A feature of KF is that it provides, in addition to
the solution, also an estimate of the error on
this solution, measured in euclidean norm.

For clarity of speech, recall the concept of co-
variance matrix and the expected value.
Let εi, i = 1, . . . , n a vector of random vari-
ables,the matrix of covariances H = (hij) rel-
ative to the vector ε is defined such that the
element hij is:

hij = COV (εi, εj)

and if X and Y are two random variables,
COV (X,Y ), is the expected value of the prod-
ucts of the distances X and Y from the mean:

COV (X,Y ) = E[(X − E(X)(Y − E(Y ))]

In probability theory the expected value (also
called the media, expectation or mathematical
expectation) of a random variable is a number
that formalizes the heuristic idea of the medium
value. In general, the expected value of a
discrete random variable (ie assume that only
a finite number of values or a countable infinity)
is given by the sum of the possible values of
that variable, each multiplied by the probability
of being engaged (ie to occur), ie the weighted
average of the possible results.

Corollary 0.1 Let z(ti) be the solution obtained us-
ing KF and, let Pi be the covariance matrix of the
error e(ti) = z(ti)− x(ti), or Pi is the matrix such
that:

Pi = E[e(ti)e(ti)
T ]

with E =expected value ,so we have:

Pi = (I −KV )Pi−1 (P0 = 0)

THE KF NUMERICAL ALGORITHM

All problems that we have been presented can
be formulated in the following form:

Definition 0.9 Given x0, compute,for all value of
j = 0, 1, 2, ...., the vector xj+1 such that:

xj+1 = Mxj + wj j = 0, 1, . . .

and such that:

yj+1 = Cxj+1 + vj+1

where, for all fixed value of j:

xj ∈ <N (unknown of the problem),

yj ∈ <P (data of the problem),

wj ∈ <N has covariance matrix Qj ∈
<N×N positive definite (data of the problem),
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2For simplicity of
notation we assume
that the matrix M and
C does not depend on
j.

vj ∈ <
p

has covariance matrix Rj ∈ <p×p

(known) positive definite (data of the prob-
lem),

M ∈ <N×N (data of the problem),

C ∈ <p×p (data of the problem).

the algorithm based on KF for the calculation of xj
proceeds in this way2 :

1. posed P0 ≡ 0

2. for j = 0, 1, 2, . . .

3. compute the vector x
′

j+1 = Mxj (predic-
tion provided by the model)

4. compute the matrix

P̃j+1 = MPjM
T +Qj

(estimation error on x
′

j+1, prediction of the
model)

5. compute the matrix R̃j+1 = Rj+1 +

CP̃j+1C
T (auxiliary matrix)

6. compute the matrix

Kj+1 = P̃j+1C
T [R̃j+1]−1

( Kalman matriz)

7. compute the vector :

xj+1 = x′j+1 +Kj+1[yj+1 − Cx′j+1]

(solution obtained using Kalman)

8. compute matrix:

Pj+1 = (I −Kj+1C)P̃j+1

(calculating the estimate of the solution ob-
tained using KF)

In order to formulate a version of this algo-
rithm that is actually feasible in a finite precision
arithmetic system we need to preliminarily ana-
lyze its numerical stability and its computational
cost.

COMPUTATIONAL COST

Here after we show for each operation (3-8),
the computational cost expressed in terms of
the number of floating point operations (floats)
[11].

3. the vector x
′

j+1 is the result of a matrix-
vector product (BLAS1):

O(N2) float

4. the matrix P̃j+1 is the result of a 2 matrix-
matrix product (BLAS3)

O(N3) float

and 1 sum of matrices (BLAS3)

O(N2) float

5. the matrix R̃j+1 is the result of a 2 matrix-
matrix product (BLAS3)

O(N2p+Np2) float

and sum of matrices (BLAS3)

O(p2) float

6. the matrix Kj+1 is the result of a matrix-
matrix product (BLAS3):

O(N2p) float

and a matrix inversion (BLAS3):

O(p3) float

7. the vector xj+1 is the result of a matrix-
vector product (BLAS2):

O(Np) float

a subtraction of vectors (BLAS1):

O(p) float
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a matrix vector product (BLAS1)

O(Np) float

a sum of vectors (BLAS1):

O(N) float

8. the matrix Pj+1 is the result of a matrix-
matrix product (BLAS3):

O(N2p) float

a subtraction of matrix (BLAS3)

O(N2) float

a product of matrices (BLAS3):

O(N3) float

Assuming that the execution time of one
float is the same if we calculate multipli-
cations/divisions or additions/subtractions,
it follows that the cost of each step of the
algorithm can be summarized as:

3. O(N2) float

4. O(N3) +O(N2) float

5. O(N2p+Np2) +O(p2) float

6. O(N2p) +O(p3) float

7. O(Np) +O(p) +O(Np) +O(N) float

8. O(N2p) +O(N2) +O(N3) float

total:

O(2N3+4N2p+3N2+Np2+2Np+N+2p3+p2+p)

CONDITIONING AND STABILITY

The algorithm implementing the Kalman filter,
is known in the literature as the "conventional"
or the "classic" implementation of the Kalman
filter (CFK). The literature shows that this
algorithm is unstable. In fact, since 10 years
after the introduction of KF (i.e. in 1970), were
known (even if only experimentally) the causes
and effects of roundoff error propagation on
the solution. In this regard, it was used the
term "divergence" to characterize the roundoff
error propagation which leads to covariance
matrices not symmetric and not positive def-
inite [2]. Another effect of the roundoff error
propagation is seen in the order of magnitude
of the elements of the covariance matrix of the
solution calculated by the algorithm. These
elements become numerically equal to zero
and this obviates the role of the matrix itself.

In the following, we review the stability of the
algorithm performing the forward error propa-
gation analysis, pointing out that the roundoff
error propagation depends on the matrix M

which describes the forecasting model. In
other words, the algorithm is backward stable,
but if the forecasting problem is ill-conditioned
the solution calculated by the algorithm is not
accurate.

We perform the stability analysis of the al-
gorithm analyzing the error propagation of
roundoff in a single time step and then we
extend the results of this analysis for any num-
ber of time steps. This assumptions means
that the matrices defining the problem to the
current step are represented exactly in the
finite precision arithmetic system, or are not af-
fected of error propagated in the previous steps.

So we start from the computation of the vector
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x
′

j+1 (step 7.) and of the error matrix associated
with the vector (step 8.). We observe here after:

At step 7 and step 8, the Kalman ma-
trix Kj+1 is the only variable containing
the roundoff error (the other quantities are
known a priori) so, the roundoff amplifica-
tion factor in these two steps depends es-
sentially on this matrix, calculated in step
6.

The roundoff error on the Kalman matrix
depends on the matrix P̃j+1 and on R̃j+1,
which are the only quantities that are ac-
tually calculated.

The matrix R̃j+1 computed at step 5, and
the error propagated on this matrix de-
rives from the error on the matrix P̃j+1,
computed at step 4.

At step 4, the computation of P̃j+1 is af-
fected by roundoff error which propagates
in the execution of operations of this step,
i.e. the product of matrices and matrix ad-
dition. The roundoff error propagation of
these operations depends on the matrix
M that describes the forecasting model.

This analysis conducted at a macroscopic level,
highlights that the roundoff error amplification of
the single step of the algorithm is due to the ma-
trix M , and in particular is due to the fact that
this algorithm is sensitive to error propagation,
not only due to the finite-precision arithmetic
system (roundoff errors) but also the errors in-
troduced in the construction of M (approxima-
tion, linearization, etc.). Here after we will high-
light that the errors amplification factor is the
conditioning number of M . The effect of this
error propagation is seen in the result of step
8: the matrix P̃j+1 is not symmetric. This result

is demonstrated using the forward error analy-
sis, on the algorithm that implements KF, (see
[12]). Specifically, in [12] is shown the following
result:

Theorem 0.1 Let δ(Pj), δ(Kj), δ(xj) roundoff
(absolute) error introduced, respectively on Pj+1,
Kj+1 and xj+1, during the computation of these
quantities in a finite-precision arithmetic system.
Let ∆(Pj), ∆(Kj), ∆(xj) the Euclidean norms of
these errors. Through the analysis of roundoff error
propagation in the execution of operations of KF in
a finite-precision arithmetic system with maximum
accuracy u, we have:

∆(Pj) = ≤ u · σ2
1/σ

2
p‖P̃j+1‖ (19)

∆(Kj) = ≤ u · σ2
1/σ

2
p‖Kj‖

∆(xj) = ≤ u · (‖Fj‖ · ‖xj‖+ ‖Kj‖ · ‖yj‖) +

+‖∆(Kj)‖ (‖C‖ · ‖xj‖+ ‖yj‖)

with
Fj = M −KjC

and σi, i = 1, ..., p are the singular values of the
Cholesky factor of matrix Rj .

Hereafter we presents an interesting result [12]:

Corollary 0.2 We get the same limitations if we as-
sume that the matricesM ,C,Qj andRj are affected
by errors of any kind, or if:

‖δM‖ ≤ ε1‖M‖ ‖δCj‖ ≤ ε2‖Cj‖

‖δQj‖ ≤ ε3‖Qj‖ ‖δRj‖ ≤ ε4‖Rj‖

con
εi ≤ u i = 1, 2, 3, 4

Proof: these errors are similar to roundoff er-
rors introduced by arithmetic operations, so we
get (14).
We observe from (14) that the errors amplifica-
tion depends on:
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σ2
1/σ

2
p = µ(R

1/2
j )2 ' µ(Rj), with R

1/2
j =

Cholesky factor of Rj .

||Fj‖ ≤ ρ(Fj) ' ρ(M)

where ρ(M) is the spectral radius of the matrix
M and µ(Rj) is the condition number of Rj .
In summary, we deduce that the algorithm
implementing KF in the standard version, is
sensitive to roundoff error propagation. More-
over, we obtain this result even by performing
the macroscopic analysis of the operations
carried out by the algorithm.

σ2
1/σ

2
p = µ(R

1/2
j )2 ' µ(Rj), with R

1/2
j =

Cholesky factor of Rj .

||Fj‖ ≤ ρ(Fj) ' ρ(M)

In literature there have been proposed many
algorithmic variants of KF, all characterized by
the common idea of

1. introducing a factorization of the covari-
ance matrix calculated in step 8, to work
only on one of the decomposition factors,
to explicitly force the symmetry of the ma-
trices involved. Some of the factorizations
used, are:

the Cholesky factorizationLLT (vari-
ant known as "square root" (SRF);

the LDLT factorization of symmetric
matrix;

reductions in triangular matrices
(QR, SV D, TSV D, reductions in
triangular/diagonal matrices using
Givens matrices, Householder ma-
trices, unitary matrices, etc....)

These transformations can be regarded as a
preconditioning of the problem, because they

introduce factorizations based on orthogonal
matrices that are perfectly conditioned. In this
way, the algorithm described in steps 1-8 be-
comes more efficient too, because precondi-
tioning reduces the size of the matrices.



APPENDIX

LEAST SQUARES APPROXIMATION
PROBLEM

Hereafter we consider the Problem:

Definition 0.10 (Gauss) We consider the follow-
ing linear system, in matrix form:

Ax = b (20)

with A = [aij ] ∈ <m×n, b = (b1, . . . , bm), x =

(x1, . . . , xn), m >> n.
We want to compute the vector x.

As the system (20) is overdetermined, in this
case the problem is an ill-posed inverse prob-
lems.
Regularizing the problem, or considering for ex-
ample of system (20) the least squares system:

min ‖r‖2 = min ‖Ax− b‖2

with r = the residual vector, r = Ax − b, we
obtain the solution of best approximation in the
sense of least squares solving the system of
normal equations [6]:

ATAx = AT b (21)

This solution is unique in the hypothesis that
the matrix A has maximal rank (ie equal to the
number of columns n).
So, the solution of the system (20) can be com-
puted solving the system of linear equations
(21). This system can be solved using any nu-
merical algorithm that uses the properties of the
matrix (symmetric, positive definite ...).

WEIGHTED LEAST SQUARES

Definition 0.11 (Gauss) Assuming the same as-
sumptions as in Problem 3.1.1, we consider the vec-
tor b, and we assume that it is affected by error (not
significant). Suppose we have information on the de-
gree of reliability (uncertainty) of each component
of the known term b. Can we use this information in
the calculation of the solution x?

We define "reliability", or uncertainty, in this
context, the error perturbing data. The problem
is therefore to use estimates of the error in the
calculation of the solution x.

Hereafter we re-formulate the Problem as:

Definition 0.12 Assuming the same assumptions as
in Problem 3.1.1, we denote the vector b the "ideal"
solution of the systemAx = b and b̃ = b+ε the per-
turbed vector in which we have emphasized the pres-
ence of the error ε ∈ <n, with ε = (ε1, ε2, . . . , εn).
We suppose that b̃2 is more reliable of b̃1, or that the
error estimate of b̃2 is less than that of the error b̃1,
ie:

ε2 < ε1

Can we use this information in the calculation of the
solution x?

The idea is to introduce the coefficients wi, i =

1, . . . , n (called weight) that weigh properly the
error information on the components of b. In
our case, we observe that:

ε2 < ε1 ⇒ w2 < w1

17
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and, we can also observe that:

ri = b̃i − (Ax)i = bi + εi − (Ax)i = εi

or, weigh the component of the error on the
known term is equivalent to weigh the corre-
sponding component of the residue. So:

‖r‖2 = ‖ε‖2

consequently, weigh the error component
present on the known term is equivalent to
weigh the corresponding component of the
residue.

The least squares approximation is reflected in
the calculation of the vector x that minimizes
the euclidean norm "weighing" of the residue r,
i.e.:

(w1r1, w2r2, . . . , wnrn), ri = b̃i − (Ax)i

i = 1, . . . , n

Let
W = diag(w1, w2, . . . , wn)

we get:

Wr = (w1r1, w2r2, . . . , wnrn)

so:

min
x
‖Wr‖2 = (Wr)T (Wr) , r = b̃−Ax

In this case, normal equations (21), become:

(WA)TWAx = (WA)TWx

which solution is expressed as:

x = (AT WTW︸ ︷︷ ︸
C

A)−1AT WTW︸ ︷︷ ︸
C

b̃ = (22)

(ATCA)−1ATCb

This system is a particular case (W = I) of
the system (21). Hereafter we will refer to the
known term vector b assuming it affected by
errors.

THE COVARIANCE MATRICES AND
THE MAHALANOBIS DISTANCE

The use of the euclidean distance, and of
the euclidean norm, in the construction of the
of least squares approximation is motivated
primarily by the assumption that the errors
are completely independent of one another,
are distributed as a Gaussian, in particular,
with zero mean and variance equal to 1 (white
noise). In this case, the covariance matrix of
the error coincides with the identity matrix.
In the general case in which it is assumed that
there is a dependency between the compo-
nents of the error on data, expressed through
a specific covariance matrix, we replace the
euclidean distance with the Mahalanobis dis-
tance calculated by using the covariance matrix .

The Mahalanobis distance is a distance mea-
sure introduced by P. C. Mahalanobis in 1936.
Differs from the euclidean distance because it
adds information on the correlations of the data
set. This distance is defined as follows:

Definition 0.13 Ley M a symmetric matrix with
positive coefficients. The Mahalanobis distance is
defined as:

dM (x, y) = (x− y)TM−1(x− y)

If M is a diagonal matrix, this distance is also
called the weighted euclidean distance.

Rem 0.1 The interpretation of the Mahalanobis dis-
tance when the weight matrix is diagonal is quite
evident, in fact, in this case, it is a linear scaling
of the euclidean distance. But in the more general
case, this is not immediate. Let’s look at an inter-
esting geometric interpretation.
Suppose we want to estimate the probability that a
vector x of the plane belongs to a set Ω, which has
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a known center OΩ. Intuitively, we can say that, as
x is closer to the OΩ, the more likely that x belongs
to that set. If, to measure the distance of x from the
center of Ω we use the Euclidean distance

d = ‖x−OΩ‖2

this means that we are assuming that the set Ω is a
sphere and all points contribute equally (ie have the
same probability) to belong to this set. Assuming
that OΩ is placed in the origin of the Cartesian
reference system O, the equation

d = ‖x−O‖22 = xTx

defines the center of the axes and radius d. So, the
hypothesis that all the points have equal probability
of belonging to Ω is reflected in the fact that the
distance of these points from the center of the whole
represents a sphere.
We assign to each component xi of x, weight pi, and
climb to the corresponding weight pi. The euclidean
norm of the vector x is:

d = ‖x‖D = xTD−1x D = diag(p1, p2)

and in this case defines the ellipse centered at the
origin coincident with the principal axes (or par-
allel) with the coordinate axes. In this case, the
two weights represent the length of the axes of the
ellipse. This means that the position in which you
find the point x influences the probability that x is in
Omega. In fact, in correspondence of the greater
weight the ellipse is more flattened and then the point
x must be closer to the center to be in the set, while
at the major axis the point x can also be located at
a greater distance from the center of Omega also
belongs to it. Finally, if you want to consider the
correlations between the components ofx, expressed
by the covariance matrix S, the equation:

d = ‖x‖S = xTS−1x

defines an ellipsoid with the principal axes rotated
with respect to the Cartesian axes. To verify that
a point x is in this set we need to calculate its

distance (euclidean) from the center of Ω and
involving all components of x in the computation
of this quantity. In other words, the Mahalabinos
distance of a vector from the center of the reference
system, in the general case, geometrically describes
an ellipsoid with the coordinate axes not orthogonal.
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