
Research Papers
Issue RP0096
January 2011

Scientific Computing and
Operation (SCO)

This work has been
funded by the EU FP7

IS-ENES project (project
number: 228203) and

partially by
HPC-EUROPA2 project

(project number:
228398) with the support

of the European
Commission Capacities

Area - Research
Infrastructures

Initiative.The authors
thankfully acknowledge

the computer resources,
technical expertise and
assistance provided by

the Barcelona
Supercomputing Center,
namely prof. Jose Maria
Baldasano, prof. Jesus
Labarta and their stuff

members.
The research leading to

these results has
received funding from the

Italian Ministry of
Education, University and
Research and the Italian
Ministry of Environment,
Land and Sea under the

GEMINA project.

NEMO-MED: OPTIMIZATION AND
IMPROVEMENT OF SCALABILITY

By Italo Epicoco
University of Salento, Italy

italo.epicoco@unisalento.it

Silvia Mocavero
CMCC

silvia.mocavero@cmcc.it

and Giovanni Aloisio
CMCC

University of Salento, Italy
giovanni.aloisio@unisalento.it

SUMMARY The NEMO oceanic model is widely used among the climate
community. It is used with different configurations in more than 50 research
projects for both long and short-term simulations. Computational
requirements of the model and its implementation limit the exploitation of
the emerging computational infrastructure at peta and exascale. A deep
revision and analysis of the model and its implementation were needed.
The paper describes the performance evaluation of the model (v3.2), based
on MPI parallelization, on the MareNostrum platform at the Barcelona
Supercomputing Centre. The analysis of the scalability has been carried
out taking into account different factors, such as the I/O system available on
the platform, the domain decomposition of the model and the level of the
parallelism. The analysis highlighted different bottlenecks due to the
communication overhead. The code has been optimized reducing the
communication weight within some frequently called functions and the
parallelization has been improved introducing a second level of parallelism
based on the OpenMP shared memory paradigm.

Keywords: Oceanic climate model; Profiling; Optimization; MPI; OpenMP

JEL: C63



02

C
en

tro
E

ur
o-

M
ed

ite
rr

an
eo

pe
r

iC
am

bi
am

en
ti

C
lim

at
ic

i

NEMO-MED: OPTIMIZATION AND IMPROVEMENT OF SCALABILITY

INTRODUCTION

NEMO (Nucleus for European Modeling of the
Ocean) is a 3-dimensional ocean model used
for oceanography, climate modeling as well as
operational ocean forecasting. It includes other
sub-component models describing sea-ice and
biogeochemistry. Many processes are param-
eterized, e.g. convection and turbulence. It is
used by hundreds of institutes all over the world.
The open-source code consists of 100k lines of
code, it is developed in France and UK by the
NEMO development team and it is fully writ-
ten in Fortran 90. The MPI (Message-Passing
Interface) paradigm is used to parallelize the
code. NEMO [5] is a finite-difference model with
a regular domain decomposition and a tripo-
lar grid to prevent singularities. It calculates
the incompressible Navier-Stokes equations on
a rotating sphere. The prognostic variables
are the three-dimensional velocity, temperature
and salinity and the surface height. To further
simplify the equations it uses the Boussinesq
and hydrostatic approximations, which e.g. re-
move convection. It can use a linear or non-
linear equation of state. The top of the ocean
is implemented as a free surface, which re-
quires the solution of an elliptic equation. For
this purpose, it uses either a successive over-
relaxation or a preconditioned conjugate gradi-
ent method. Both methods require the calcu-
lation of global variables, which incurs a lot of
communications (both global and with its near-
est neighbors) when multiple processors are
used. The scientific literature reports several
performance analyses of NEMO model, using
different configurations and with several spa-
tial and time resolutions. At the National Su-
percomputer Centre (NSC) the porting, opti-
mization, tuning, scalability test and profiling
of NEMO model on linux - X86-64 - infiniband
clusters, have been performed. ORCA1 config-
uration available from NOCS website has been

used for scaling/benchmark studies. Within the
PRACE [1] project, a benchmark activity report
on several applications has been produced.
The NEMO code has been ported and eval-
uated on several architectures such as the IBM
Power6 at SARA, the CRAY-XT4, the IBM Blue-
Gene [6]. The paper describes the research we
have carried out on NEMO model with the fol-
lowing goals: (i) the analysis of the code with
respect to the MareNostrum target machine; (ii)
the optimization of some functions increasing
communication overhead; (iii) the improvement
of the parallel algorithm in order to better exploit
a scalar massive parallel architecture. The pa-
per is organized as follows: the next session de-
scribes the NEMO configuration we have used
as reference and its performance profiling on
the MareNostrum platform; the optimization of
the code is detailed in the further section. The
last section of the paper describes the introduc-
tion of a second level of parallelism and derived
benefits.

ANALYSIS OF SCALABILITY

The analysis of scalability of the parallel code
aims at verifying how much it is possible to in-
crease the complexity of the problem, in terms
of spatial and time resolution, scaling up the
number of processes. As first step of the anal-
ysis we profiled the original NEMO code for
highlighting possible bottlenecks slowing down
the efficiency, when the number of processes
increases.

MODEL CONFIGURATION

The NEMO configuration taken into account is
based on the official release (v3.2) with some
relevant improvements introduced by INGV (Is-
tituto Nazionale di Geofisica e Vulcanologia -
Italy). Moreover it is tailored on the Mediter-
ranean Basin. The Mediterranean Sea is both
too complex and too small to be adequately



NEMO-MED: OPTIMIZATION AND IMPROVEMENT OF SCALABILITY

03

C
en

tro
E

ur
o-

M
ed

ite
rr

an
eo

pe
r

iC
am

bi
am

en
ti

C
lim

at
ic

i

resolved in global-scale climate and ocean-
only models. To properly address some key
processes, it is necessary to adequately rep-
resent the general circulation of the Mediter-
ranean basin, the fine-scale processes that
control it (e.g. eddies and deep convection),
and the highly variable atmospheric forcing. A
high-resolution general circulation model of the
Mediterranean Sea has been developed in the
last 10 years to provide operational forecast of
the ocean state [8]: the Mediterranean ocean
Forecasting System [4]. The physical model is
currently based on version v3.2 of NEMO and
is configured on a regular grid over the Mediter-
ranean basin plus a closed Atlantic Box. Hori-
zontal resolution is 1/16 x 1/16 degrees with 72
vertical Z-levels. The model is forced with me-
teorological data that are either read from grid-
ded external datasets or interpolated on line to
the model grid. The model salinity and tem-
perature fields along the boundary of the At-
lantic box are relaxed at all depth to external
data (open boundary conditions [7]). This is
done within an area which has an extension of
2¡ at the west and south boundary and 3¡ at
the northern boundary (in order to cover all the
area of the Gulf of Biscay). This configuration,
even more if coupled with biochemical models,
poses several computational challenges:

High spatial resolution with many grid
points and a small numerical time step

Presence of open boundaries, which im-
plies that additional data need to be read
by selected sub-domains

Computation of diagnostic output across
sub-domains

Storage of large amount of data with var-
ious time frequencies.

PROFILING

The research activity has been carried out at
the Barcelona Supercomputing Center using
the MareNostrum cluster. It is one of the most
powerful systems within the HPC-Ecosystems
in Europe. It has a calculation capacity of 94.21
Teraflops. One of the key issues that charac-
terize MareNostrum is its orientation to be a
general purpose HPC system. The comput-
ing racks have a total of 10240 processors.
Each computing node has 2 processors Pow-
erPC 970MP dual core at 2.3 GHz, 8 GB of
shared memory and a local SAS disk of 36 GB.
Each node has a network card Myrinet type
M3S-PCIXD-2-I for its connection to the high-
speed interconnection and the two connections
to the network Gigabit. The default compilers
installed are IBM XL C/C++, and IBM XL FOR-
TRAN. There are also available the GNU C
and FORTRAN compilers. The MareNostrum
uses GPFS as high-performance shared-disk
file system that can provide fast, reliable data
access from all nodes of the cluster to a global
file system. Moreover, every node has a local
hard drive that can be used as a local scratch
space to store temporary files during the execu-
tion of user’s jobs. All data stored in these local
hard drives will not be available from the lo-
gin nodes. The first evaluation was focused on
establishing how much the computational per-
formance are influenced using the GPFS file
system or the local disks. The results, showed
in figure 1 and analytically reported in table 1,
highlight that the exploitation of local disks can
reduce the wall clock time up to 40% against us-
ing the GPFS file system. The performances of
the GPFS are strictly related to the actual load
of the whole cluster and hence they are very
variable during the time. Since the local disks
are not accessible from the login node, some
modifications to the NEMO runscript file, used
to launch the model, have been performed.



04

C
en

tro
E

ur
o-

M
ed

ite
rr

an
eo

pe
r

iC
am

bi
am

en
ti

C
lim

at
ic

i

NEMO-MED: OPTIMIZATION AND IMPROVEMENT OF SCALABILITY

Figure 1:
Execution time on 1day simulation: GPFS vs local disk.

Table 1
Execution time on 1day simulation: GPFS vs local disk.

Cores GPFS Local Disk Gain(%) Speed-up

8 2205.86 2071.45 6.09 1.065
16 1112.19 957.17 13.94 1.162
32 614.02 519.91 15.33 1.181
48 474.65 402.41 15.22 1.180
64 401.29 328.58 18.12 1.221
80 407.67 272.55 33.14 1.496
96 365.64 260.42 28.78 1.404

112 331.35 227.85 31.24 1.454
128 279.75 218.35 21.95 1.281

The NEMO code supports 2D domain decom-
position. The size and the shape of the sub
domain assigned to each parallel process im-
pact on the overall performance. The second
step of performance analysis has been focused
on the impact of the domain decomposition on
the wall clock time. The analysis of the scal-
ability has been performed taking into account
a 1D decomposition (both horizontal and verti-
cal) and a 2D decomposition. The 2D decom-
position has been chosen such that the local
sub domain would have a square shape. The
experimental results demonstrate that the best
performance is achieved using a 2D decompo-
sition as showed in figure 2.

The overall evaluation of the legacy code has
been carried out in order to analyze the paral-
lel behavior of the application. In particular at
high level we have taken into account two met-

Figure 2:
Execution time on 1day simulation w.r.t. domain

decomposition.

rics: the parallel scalability and the parallel effi-
ciency. Both metrics provide an overall evalua-
tion on how much the code is well parallelized.
These measures can guide further analysis fo-
cused on specific aspects of the code. It is
worth noting here that the approach followed
for the analysis started considering the appli-
cation as a black box. The complexity of the
code makes quite unfeasible the definition of
a reliable theoretical performance model. The
approach we followed was based on an exper-
imental approach. The parallel efficiency and
speed-up, respectively reported in table 2 and
figure 3, have been evaluated taking as refer-
ence time the wall clock time of the application
with 12 processes. Due to the amount (8 GB) of
main memory per node available on MareNos-
trum, the execution of the sequential version
of the model is prohibitive requiring at least 20
GB with this configuration. The experimental
results showed a limit of the scalability up to
about 192 cores.

In order to perform a deeper investigation on the
motivation for the poor efficiency, we have ana-
lyzed the scalability of each routine in the code.
For identifying those routines with a relevant
computational time we used the gprof utility and
the Paraver [3] tool with dynamic instrumenta-
tion of the code. Figure 4 shows a paraver



NEMO-MED: OPTIMIZATION AND IMPROVEMENT OF SCALABILITY

05

C
en

tro
E

ur
o-

M
ed

ite
rr

an
eo

pe
r

iC
am

bi
am

en
ti

C
lim

at
ic

i

Table 2
Original code performance.

Decom
posi-
tion

Cores 1day
sim
(sec)

Effici
ency
(%)

SYPD 1Y
sim
(hours)

6x2 12 1302.54 100.00 0.18 132.06
16x4 64 248.71 98.20 0.95 25.22
20x6 120 170.37 76.46 1.39 17.27
128x2 256 109.57 55.72 2.16 11.11
32x9 288 124.84 43.47 1.90 12.66
34x10 340 112.28 40.94 2.11 11.38
128x3 384 99.87 40.76 2.37 10.13
36x11 396 111.08 35.53 2.13 11.26
128x4 512 110.57 27.61 2.14 11.21

Figure 3:
Speed-up of original version.

snapshot of a very short run (just 3 time steps).
Different colors represent different states of the
run: blue for computation, red for I/O opera-
tions, orange and pink respectively for global
and point-to-point communications. opa init ini-
tializes the parallel environment and synchro-
nizes processes. Its execution time is negligi-
ble when the number of steps is high. The first
and the last time steps perform some IO opera-
tion, respectively reading input and restart and
writing output and restart.

The analysis has been restricted to a single
time step: we chose a "general" time step, con-
sidering as "general" those time steps with op-
erations occurring every time. Indeed some
"occasional" operations like reading the open
boundaries values, or storing the state variable
values, occur only for some particular time step.
We have identified about 36 routine of interest

Figure 4:
NEMO run paraver trace.

and we have evaluated their scalability running
the application with 8, 16, 36, 72 and 128 pro-
cesses. For each routine we have taken into
consideration both computing and communica-
tion time. The results of the analysis are re-
ported in figure 5.

Figure 5:
NEMO functions scalability: computation, communication

& total time.



06

C
en

tro
E

ur
o-

M
ed

ite
rr

an
eo

pe
r

iC
am

bi
am

en
ti

C
lim

at
ic

i

NEMO-MED: OPTIMIZATION AND IMPROVEMENT OF SCALABILITY

The analysis immediately highlighted the
obc rad routine (in charge of calculate the ra-
diative velocity on the open boundaries), the
dyn spg (in charge to solve the elliptic equation
for the barotropic function) and the tra adv (in
charge to evaluate the advection transport of
the fields), as those routines to be deeper in-
vestigated.

OPTIMIZATION

The optimization phase aimed at redesign crit-
ical part of the NEMO code taking into account
the following main aspects:

Exploitation of the memory hierarchy. A
relevant limitation of the performance is
strictly related to redundant memory ac-
cesses or to a high level of cache miss
ratio

The I/O operations are one of the criti-
cal factors that limit the performance and
the scalability of a climate model. The
I/O pattern implemented in NEMO can be
classified as: read once and write period-
ically

The communication among parallel pro-
cesses plays a crucial role on the per-
formance of a parallel application. Sev-
eral good practices can be followed in
order to reduce the communication over-
head, such as modifying the communica-
tion pattern in order to overlap communi-
cation and computation; joining several
short messages sent with several MPI
calls in a bigger one sent once.

The analysis of the scalability showed a limit at
192 cores due to a high level of communication
overhead. The bottleneck has been identified in
the function responsible for the evaluation of the

open boundaries conditions. After the evalua-
tion of the open boundaries, the processes ex-
change the overlapped values over the bound-
aries with their neighbors. The function toke
more than 60% of its time in communication.

OBC RAD FUNCTION

As already stated before, the NEMO configu-
ration we used for our analysis is limited to an
oceanic region and namely the Mediterranean
basin, which communicates with the rest of
the global ocean through "open boundaries".
An open boundary is a computational border
where the aim of the calculations is to allow
the perturbations generated inside the compu-
tational domain to leave it without deterioration
of the inner model solution. However, an open
boundary has also to let information from the
outer ocean enter the model and should sup-
port inflow and outflow conditions. The open
boundary package OBC is the first open bound-
ary option developed in NEMO. It allows the
user to:

Tell the model that a boundary is "open"
and not closed by a wall, for example
by modifying the calculation of the diver-
gence of velocity there

Impose values of tracers and velocities
at that boundary (values which may be
taken from a climatology): this is the
"fixed OBC" option

Calculate boundary values by a sophisti-
cated algorithm combining radiation and
relaxation ("radiative OBC" option).

The Open Boundaries calculation is performed
within the obc rad routine. The current imple-
mentation of the obc rad function swaps arrays
to calculate radiative phase speeds at the open
boundaries and calculates those phase speeds



NEMO-MED: OPTIMIZATION AND IMPROVEMENT OF SCALABILITY

07

C
en

tro
E

ur
o-

M
ed

ite
rr

an
eo

pe
r

iC
am

bi
am

en
ti

C
lim

at
ic

i

if the open boundaries are not fixed. In case
of fixed open boundaries the procedure does
nothing. In particular the following algorith-
mic steps are performed: (i) each MPI process
calculates the radiative velocities on its sub-
domain starting with zonal velocity field; (ii) the
data on the border of the local sub-domain are
exchanged among MPI processes with a cross
communication pattern; (iii) repeat from step
one for the following fields: tangential velocity,
temperature and salinity. In the worst case,
when the whole domain has 4 open bound-
aries (east, west, north and south) each MPI
process performs 16 exchanges (4 fields ex-
changes multiplied by 4 open boundaries). For
each field, an MPI process sends and receives
the data to/from 4 neighbors. Even though
the exchanged fields are 3D arrays, the cur-
rent implementation of the communication rou-
tine (named mppobc) calls iteratively a library
routine for sending/receiving 2D arrays. Fig-
ure 6 shows the original communication pattern
among processes.

OBC RAD OPTIMIZATION

The analysis of the scalability showed that
the communication overhead within the obc rad

function reaches a ratio of 74% running the
model with 8 cores. The main limits to
the scalability have been then identified in
a heavy use of communication among pro-
cesses. With a deeper analysis of the obc rad

algorithm we noticed that several calls to the
MPI send/MPI recv were redundant and hence
they could have been removed. Figure 7 illus-
trates the essential communications needed for
exchanging the useful data on the boundaries.

The optimization reduced the communication
time through the following actions: the pro-
cesses on the borders are the only processes
involved in the communication; the data ex-
changed between neighbors are only the data

Figure 6:
Communication pattern during the open boundaries
evaluation: before optimization all processes were

involved in the communication.

on the boundary; the data along the vertical lev-
els are "packed" and sent with only one com-
munication invocation. Figures 8 and 9 show
respectively the how communications (yellow
lines) within the obc rad are drastically reduced
after the optimization.

The analysis of the scalability of NEMO using
the optimized version of the obc rad routine has
been performed starting from a configuration
on 12 cores with a decomposition 6x2 up to
512 cores (128x4) on 1-day simulation. As re-
ported in table 3, the minimum wallclock time
happens on 396 cores with a decomposition
36x11. Efficiency increases compared with the
original version, as well as the parallel speed-
up (figure 10), and the obc rad execution time
was reduced of about 33.81%.

SOL SOR FUNCTION

After the obc rad optimization, a new detailed
analysis of scalability (figure 11) on all of the



08

C
en

tro
E

ur
o-

M
ed

ite
rr

an
eo

pe
r

iC
am

bi
am

en
ti

C
lim

at
ic

i

NEMO-MED: OPTIMIZATION AND IMPROVEMENT OF SCALABILITY

Table 3
OBCRAD optimized vs original version: performance analysis.

Decomposition Cores Original exec. time (sec) Original efficiency(%)
OBCRAD optimized
exec. time (sec)

OBCRAD optimized
efficiency (%)

6x2 12 1302.54 100.00 1281.28 100.00
12x3 36 385.32 112.68 382.47 111.67
14x4 56 274.22 101.79 244.73 112.19
16x4 64 248.71 98.20 226.17 106.22
16x5 80 205.00 95.31 171.54 112.04
20x6 120 170.37 76.46 127.54 100.46
24x7 168 151.45 61.43 95.98 95.35
28x8 224 136.78 51.02 84.95 80.80

128x2 256 109.57 55.72 88.70 67.71
32x9 288 124.84 43.47 87.24 61.20

34x10 340 112.28 40.94 81.26 55.65
36x11 396 111.08 35.53 73.53 52.80
128x4 512 110.57 27.61 75.02 40.03

Figure 7:
Communication pattern during the open boundaries

evaluation: after optimization only the processes on the
boundaries were involved in communication and they

exchange only the data on the boundary.

above mentioned 36 functions has been per-
formed.

It allowed identifying the SOR solver routine
(called by the dyn spg function) as the most
expensive from the communication point of
view. The function implements the Red-Black

Figure 8:
Communications within OBCRAD before optimization.

Figure 9:
Communications within OBCRAD after optimization.

Successive-Over-Relaxation method [9], an it-
erative search algorithm used for solving the el-
liptical equation for the barotropic stream func-
tion. The algorithm iterates until convergence
for a maximum number of times. The high fre-
quency of exchanging data within this function
increases the total number of communications.



NEMO-MED: OPTIMIZATION AND IMPROVEMENT OF SCALABILITY

09

C
en

tro
E

ur
o-

M
ed

ite
rr

an
eo

pe
r

iC
am

bi
am

en
ti

C
lim

at
ic

i

Figure 10:
Speed-up: OBCRAD optimized vs original version.

Figure 11:
NEMO functions scalability: computation, communication

& total time.

At each iteration, the generic process computes
the black points inside the area, updates the
black points on the local boundaries exchang-
ing values with neighbors, computes red points
inside and finally updates red points on the lo-
cal boundaries (always exchanging with neigh-
bors). Each process exchanges data with 4 (at
north, south, east and west) of its 8 neighbors:
the order of data transfer guarantees data reli-

ability. Communications are very frequent and
the total number of exchanges is given by the
number of iteration multiplied by 2 (one for red
points, and one for black) by 4 neighbors. The
sol sor function, implementing the SOR solver
method, calls the lnk 2d e function for exchang-
ing data among processes. Both the func-
tions are characterized by two components: a
running component respectively computing and
buffering data before sending and after receiv-
ing and a communication one (within the sol sor

there is a group communication during the con-
vergence test).

SOL SOR OPTIMIZATION

The algorithm of sol sor suggests a possibility
to improve performance, especially when the
number of processes increases. At each iter-
ation, communication and computation could
be overlapped. The algorithm can be modi-
fied as follows: (i) computing of data on the
local boundaries, (ii) communication of com-
puted region overlapped with computation of
the inner domain. This solution has been im-
plemented, but it did not give expected re-
sults. The original version uses blocking com-
munications during the exchange. The mod-
ified version was implemented by the use of
non-blocking communications to allow mes-
sage transfer to be overlapped with computa-
tion. As result, not only running, but also com-
munication time was increased after the code
modification. Changing communication algo-
rithm, the computation within sol sor has been
split in two steps. This generated an access to
non-contiguous memory locations with a con-
sequent increase of L1 cache misses. More
cache misses means more instructions and
then more computing time. Moreover, the in-
troduction of non-blocking communication does
not guarantee the order of data exchanging
among processes, so that a generic process



10

C
en

tro
E

ur
o-

M
ed

ite
rr

an
eo

pe
r

iC
am

bi
am

en
ti

C
lim

at
ic

i

NEMO-MED: OPTIMIZATION AND IMPROVEMENT OF SCALABILITY

needs to communicate not only with the north,
south, east and west processes, but also with
the diagonal ones, doubling the number of com-
munications. Since communication and com-
putation are overlapped, the increase of com-
munications number should not increase the
execution time. However, the behavior of com-
munications on MareNostrum has not been the
expected one. Using the Dimemas [2] tool,
we have theoretically evaluated the new algo-
rithm on an ideal architecture with the nominal
values declared for MareNostrum (figure 12).
Even though from a theoretical point of view
the new algorithm performed better than the
old one, the experimental results did not con-
firm the expectations. One of the possible mo-
tivations could be found to the implementation
of the non-blocking communication within the
installed MPI library. Moreover it is worth not-
ing here that with a high level of parallelism,
the sol sor function has a fine computational
granularity, so that the execution time feels the
effects of several causes not directly related to
the application but also to the system or to the
tracking tools and it is very difficult to estimate
its behavior. In these cases the only thing is
to consider the experimental results, which on
MareNostrum highlight better performances of
the original version.

NEMO PARALLELIZATION

Many NEMO routines are characterized by op-
erations performed on a 3D domain, along jpi,
jpj and jpk as showed in figure 13. The MPI
parallelization exploits the domain decomposi-
tion on 2 dimensions (along jpi and jpj). In or-
der to reduce the computational time, a hybrid
parallel approach could be introduced. An addi-
tional level of parallelization, using the OpenMP
shared-memory paradigm, could work on ver-
tical levels, which are fixed for our NEMO con-
figuration to 72.

Figure 12:
Analysis by Dimemas: (a) real behavior of

communications on MareNostrum, (b) expected behavior
of communications on MareNostrum.

Figure 13:
OpenMP parallelization applied to 3D domain

decomposition.

Before modifying the code, an estimation of
the percentage of the application, which should
benefit from the use of OpenMP is needed.
Using the gprof utility the percentage of time
spent by functions called by the step routine
(simulating a time step) and containing loops
on levels without dependences, has been com-
puted. It was about the 83% of the total compu-
tational time. OpenMP parallelization has been
introduced within all of these functions. Fixing
the number of allocated cores, we can execute
the application using only MPI (in this case the
number of MPI processes will be equal to the
allocated cores) or using MPI/OpenMP paral-
lelization (in this case, in order to better ex-
ploit the MareNostrum architecture, we created
4 OpenMP thread for each MPI process). A



NEMO-MED: OPTIMIZATION AND IMPROVEMENT OF SCALABILITY

11

C
en

tro
E

ur
o-

M
ed

ite
rr

an
eo

pe
r

iC
am

bi
am

en
ti

C
lim

at
ic

i

Paraver analysis of the duration of the functions
called in the main loop over the time steps has
been performed. Functions execution is more
balanced among threads using the hybrid ver-
sion due to the reduced number of communica-
tions (figure 14 shows how time spent waiting
for communication, the white lines, has been
reduced). The total execution time has been
reduced too (figure 15).

Figure 14:
OpenMP parallelization: (a) communications using 256
cores for 256 MPI procs, (b) communications using 256

cores for 64 MPI procs, each one with 4 threads.

With the OpenMP parallelization, the parallel
speed-up improved, as shown in figure 16. The
benefits derived from the hybrid parallelization
can be appreciated when the number of MPI
processes exceeds 30 and consequently the
total threads number exceeds 120.

Table 4 shows performance results in terms of
execution time and efficiency, on 1-day simula-
tion, comparing the original code with the ver-

Figure 15:
OpenMP parallelization: functions duration using 256

cores for 256 MPI procs, (b) functions duration using 256
cores for 64 MPI procs, each one with 4 threads.

Figure 16:
Speed-up: OpenMP parallelized vs previous versions.

sion after the optimization of the obc rad routine
and after the introducing of the second level
of parallelism. The minimum wallclock time
happens on 396 cores. Efficiency increases
compared with both the original version and
the obc rad optimized one; execution time is
reduced of about 18%.



12

C
en

tro
E

ur
o-

M
ed

ite
rr

an
eo

pe
r

iC
am

bi
am

en
ti

C
lim

at
ic

i

NEMO-MED: OPTIMIZATION AND IMPROVEMENT OF SCALABILITY

Table 4
OpenMP parallelized vs previous versions: performance analysis.

MPI De-
composition Cores

Original
exec. time
(sec)

Original ef-
ficiency(%)

OBCRAD
optimized
exec. time
(sec)

OBCRAD
optimized
efficiency
(%)

OpenMP
exec. time
(sec)

OpenMP ef-
ficiency (%)

3x1 12 1302.54 100.00 1281.28 100.00 1767.30 100.00
8x2 64 248.71 98.20 226.17 106.22 346.75 95.57

10x3 120 170.37 76.46 127.54 100.46 156.48 112.94
16x4 256 109.57 55.72 88.70 67.71 75.89 80.46
18x4 288 124.84 43.47 87.24 61.20 68.57 79.15
17x5 340 112.28 40.94 81.26 55.65 60.34 76.19
33x3 396 111.08 35.53 73.53 52.80 60.29 65.47

Finally, figure 17 highlights execution time for
1-day simulation. Figure zooms on a range of
cores between 120 and 396, where all of the
optimizations can be more appreciated.

Figure 17:
Performance analysis: execution time.

CONCLUSIONS AND FUTURE WORK

In this work, we presented the profiling and op-
timization of one of the most deployed oceanic
model: NEMO. The profiling phase is manda-
tory to identify hot-spot functions and to drive
optimization. Profiling has been performed on
all of the functions called by the main step rou-
tine, splitting computation and communication
components. This allowed identifying two rou-
tines very expensive from the communication

point of view: the obc rad and the sol sor rou-
tines. The optimization of the obc rad improved
execution time of about 34% on 396 MPI pro-
cesses, while the optimization of the sol sor rou-
tine had no benefits on MareNostrum due to the
strange behavior of communications on the tar-
get machine. The introduction of a second level
of parallelism, based on the OpenMP shared-
memory paradigm, improved performance of a
further 18%. For the future, we plan the follow-
ing actions:

The Evaluation of all the optimizations on
the IBM Power6 cluster at CMCC

The evaluation of I/O operations perfor-
mance, which is a very interesting factor
in almost all of the climate codes

The Integration of all the optimizations
within the new version of NEMO-MED
based on v3.3 of NEMO

The evaluation of other levels of optimiza-
tions (e.g. at algorithm level).



NEMO-MED: OPTIMIZATION AND IMPROVEMENT OF SCALABILITY

13

C
en

tro
E

ur
o-

M
ed

ite
rr

an
eo

pe
r

iC
am

bi
am

en
ti

C
lim

at
ic

i

Bibliography

[1] The partnership for advanced computing in
europe.

[2] Barcelona Supercomputing Centre.
Dimemas overview. BSC Performance Tools,
2010.

[3] Barcelona Supercomputing Centre. Par-
aver overview. BSC Performance Tools, 2010.

[4] INGV. Mediterranean ocean forecasting
system.

[5] G. Madec. Nemo ocean engine. Technical
Report Technical Report 27 ISSN No 1288-
1619, Institut Pierre-Simon Laplace (IPSL),
2008.

[6] P. Michielse, J. Hill, G. Houzeaux, O. Lehto,
and W. Lioen. Report on available perfor-
mance analysis and benchmark tools, rep-
resentative benchmark. Technical Report
PRACE Project Deliverable D6.3.1.

[7] P. Oddo and N. Pinardi. Lateral open bound-
ary conditions for nested limited area mod-
els: a process selective approach. Ocean

Modelling, 2007.

[8] M. Tonani, N. Pinardi, S. Dobricic, I. Pujol,
and C. Fratianni. A high-resolution free-
surface model of the mediterranean sea.
Ocean Science, Ocean Sci., 4:1–14, 2008.

[9] D. M. Young. Iterative methods for solving
partial difference equations of elliptic type.
Trans. Amer. Math. Soc., 76:92–111, 1954.

c© Centro Euro-Mediterraneo per i Cambiamenti Climatici 2011

Visit www.cmcc.it for information on our activities and publications.

The Euro-Mediteranean Centre for Climate Change is a Ltd Company with its registered office and
administration in Lecce and local units in Bologna, Venice, Capua, Sassari and Milan. The society
doesn’t pursue profitable ends and aims to realize and manage the Centre, its promotion, and research
coordination and different scientific and applied activities in the field of climate change study.


