Cmcc Centro Euro-Mediterraneo
sui Cambiamenti Climatici

Research Papers
Issue RP0141
October 2012

Scientific Computing and
Operation Division (SCO)

By Italo Epicoco
University of Salento & CMCC
italo.epicoco@unisalento.it

Silvia Mocavero
CMCC
silvia.mocavero@cmcc.it

Alessandro D’Anca
CMCC
alessandro.danca@cmcc.it

and Giovanni Aloisio
University of Salento & CMCC
giovanni.aloisio@unisalento.it

The research leading to
these results has
received funding from the
Italian Ministry of
Education, University and
Research and the lItalian
Ministry of Environment,
Land and Sea under the
GEMINA project.

Common Pitfalls Coding a Parallel
Model

SUMMARY The process for developing a climate model often involves a
wide community of developers. All of the code releases can be classified
into two groups: (i) improvements and updates related to modeling aspects
(new parameterizations, new and more detailed equations, remove of
model approximations, and so on); (ii) improvement related to the
computational aspects (performance enhancement, porting on new
computing architectures, fixing of known bugs, and so on). The developing
process involves both programmers, scientific experts, and rarely also
computer scientists. The new improvements and developments are mainly
focused on the scientific aspects and, in second stage, on the computing
performance. The developments to improve the physic model often does
not care about its impacts on the computational performances. This poses
some issue in the developing process; after a new implementation, the code
must be revised after new implementation to face out with the performance
issues. In this work we analyze 5 different releases starting from the NEMO
v3.2 (to be considered as our reference) and evaluate how new
developments impact on the computational performances.

-
N

Centro Euro-Mediterraneo sui Cambiamenti Climatici

CMCC Research Papers

INTRODUCTION

The evolution and reliability of NEMO [1] are or-
ganized and controlled by a European Consor-
tium created in 2008 between CNRS (France),
Mercator-Ocean (France), NERC (UK), UKMO
(UK) and, since 2011, CMCC (ltaly) and
INGV(ltaly). The purpose of the Consortium
is to set up appropriate arrangements for the
successful and sustainable development of the
NEMO System as a well-organized, state-of-
the-art ocean model code system suitable for
both research and operational work. In order
to achieve this goal the Consortium Members
have agreed on:

® the resources they will commit each year
to the NEMO System Team which will
maintain the code;

® the arrangements for managing and co-
ordinating the work of the NEMO System
Team and for setting its priorities;

® the arrangements for the Intellectual
Property rights over the Software to make
the code freely available under an appro-
priate version of the CeCILL Free Soft-
ware License with the aim of attracting a
critical mass of scientists to use the soft-
ware and contribute developments to be
incorporated into it.

The NEMO System Team is in charge of the
maintaing of the reference NEMO code and
its distribution through the NEMO System web
server. The NEMO System Team shall carry
out the Work Plan proposed by the Develop-
ers Committee and approved by the Steering
Committee. This Work Plan will include:

® incorporation into NEMO System of new
developments (scientific or technical);

® reorganization of the code to improve its
readability, orthogonality or structure;

B optimization of NEMO System on the ar-
chitectures available in the Consortium;

® maintenance of the scientific paper and
on-line documentation;

® configuration control of the available ver-
sions of NEMO System;

® testing and release of new versions (typi-
cally once or twice a year);

® making NEMO System readily available
to the scientific community and to the
Consortium Members;

® providing assistance to new users;

B practical support for user meetings (held
typically once a year);

B assistance in scientific developmentin an
area of high priority.

The Work Plan, describing the work which each
of the Consortium Members will contribute to
the NEMO development, is updated annually
according to the following schedule:

31 March: Report of work by the NEMO
System Team delivered by the NEMO Project
Manager to Steering Committee;

Not later than one month before the Steering
Committee: draft of Work-Plan for following
year prepared by NEMO Project Manager and
approved by NEMO Scientific Leader, following
consultation of Developers Committee and
discussion with all Consortium Members;

Not later than the 30th of November: ~ Work-
Plan for following year agreed by Steering
Committee;

Before the end of the year: All schedules to
Agreement updated for following year.

The developing process involves both program-
mers, modeling experts, and rarely also com-
puter scientists. The improvements and new
developments are mainly focused on modeling
and, in a second stage, on computing perfor-
mance. This often poses some issue in the
developing process where the code must be re-
vised after new implementations to face out with
the performance issues. In this work we take 5
different releases starting from the NEMO v3.2
(to be considered as our reference) and evalu-
ate how new modeling developments impact on
the computational performances. The NEMO
releases are shortly described below:

nemo_v3.2.2 as reference

nemo_v3.3.0 new developments include: (i)
merge between TRA and TRC; (ii) intro-
duction of a modified leapfrog-Asselin fil-
ter time stepping scheme; (iii) additional
scheme for iso-neutral mixing; (iv) addi-
tion of a Generic Length Scale vertical
mixing scheme; (v) addition of the atmo-
spheric pressure as an external forcing
on both ocean and sea-ice dynamics; (vi)
addition of a diurnal cycle on solar radi-
ation; (vii) river runoffs added through a
non-zero depth, and having its own tem-
perature and salinity; (viii) CORE Il nor-
mal year forcing set as the default forcing
of ORCA2-LIM configuration; (ix) gener-
alization of the use of fidread for all input
fields; (x) optional application of an as-
similation increment.

nemo_v3.3.1 this version matches with 3.3.0
code with dynamic allocation added. The
main implications are: (i) the number of
processors are now part of the namelist
nam_mpp; (ii) the definition of the config-
uration parameters in par_*h90 have to
be slightly changed; (iii) the coding rules
have been updated.

Common Pitfalls Coding a Parallel Model

nemo_v3.4a this is a major release and rel-
evant improvements have been added.
From scientific point of view: (i) new pres-
sure gradient suitable for s-coordinate;
(i) completion of Griffies iso-neutral diffu-
sion; (iii) Pacanowski-Philander scheme
for computation of Ekman depth added;
(iv) a new bulk formulae added; (v) a drag
coefficient compute by wave model intro-
duced; (vi) tidal potential forcing added;
(vii) Netpune effect parametrization; (viii)
point to point MPI communication for
north fold; (ix) sub time stepping for bio-
geochemistry models when using non-
linear free surface allowed; (x) improve-
ment in PISCES.
From coding point of view some simplifi-
cation have been made: (i) simplification
of dynamic allocation; (ii) completion of
merging between TRA and TRC; (iii) more
flexible definition of BDY input data; (iv)
simplification of interfaces toward biogeo-
chemical models; (v) interface with CICE
in coupled mode; (vi) use of fldread to
read/interpolate data for passive tracers
and dynamical input data for OFFLINE
configurations.

nemo_v3.4b this version corresponds to 3.4a
code with some performance improve-
ment on dynamical allocation using the
stack: no explicit coding nor POINTER.

DEFINITION OF TESTS

Tests have been done using the GYRE con-
figuration as equivalent to 1/4° (cfg=48) and
1/12° (cfg=144) resolutions. In our case the
GYRE configuration makes no /O (nor write
nor restart), and runs 720 time steps. The
CPU time sums CPU time in seconds for time
steps between 2 and 719. In the namelist,
nn_bench=1, rn_rdt = 180. Cpp keys: key_gyre
key_dynspg_fit key_ldfslp key_zdftke key_mpp_mpi.

Centro Euro-Mediterraneo sui Cambiamenti Climatici

Centro Euro-Mediterraneo sui Cambiamenti Climatici

CMCC Research Papers

COMPUTING ENVIRONMENT

Tests have been performed on the IBM Power6 cluster at CMCC. The compiler name, flags and
environment variables, chosen to improve the performance, are reported in the following.

Computer used:

Name : Calypso (calypso.cmcc.it)
Architecture : IBM P575 node (32 cores Power6 4.7GHz per node)
Compiler : mpxIf90_r

Compiler flags : -gstrict -qfree=f90 -O3 -grealsize=8 -gextname -qsource -q64 -glargepage -gmaxmem=-1
-gqarch=pwr6 -qtune=pwr6 -q64

[Environment variables :
export MP_INSTANCES=4
export MP_WAIT_MODE-=poll
export MP_POLLING_INTERVAL=30000000
export MP_SHARED_MEMORY=yes
export MP_EUILIB=us
export MP_EUIDEVICE=sn_all
export LDR_.CNTRL=TEXTPSIZE=64K@STACKPSIZE=64K@DATAPSIZE=64K
export MP_TASK_AFFINITY=core

RESULTS

The wall clock time increases at each new re-
lease except for the last one, as shown in figure
1. The biggest increment appears between re-
lease v3.3.1 and v3.4a. The wall clock time for
the release v3.4.a is almost double with respect
to the wall clock time of the v3.2.2. To evaluate
the use of SMT, a decomposition 8x8 has been
used. Enabling SMT, all of the 64 processes
have been mapped on one node. Disabling
SMT, 2 nodes have been allocated. Figure 2
shows that using half number of processors,
the CPU time is less than double.

Wall clock time - CFG=48 8X8
1800

1600
1400

1200

seconds

i\

~=SMT OFF

1000 ~=-5MT ON

800

600

v3 22 w330 v331 vida v34b
NEMO versions

Figure 1:
GYRE wall clock time: resolution given by cfg=48; 64
processes (on one node enabling SMT, on two nodes
disabling SMT)

Wall clock time - CFG=48

2400
2200
2000
1800
1600
1400
1200
1000

seconds

\

~#SMT ON - 8x8
“+SMT OFF - 8x4

v3 22 wv330 w331 v3i4da v34db
NEMO versions

Figure 2:
SMT evaluation. One node has been used either with 32
and 64 processes

In the previous test the number of nodes has

Common Pitfalls Coding a Parallel Model

been fixed to 1 and the decomposition has been
changed. The results show that the a comput-
ing node is better exploited when SMT is active.
The difference of each new release with respect
to the previous one is reported in figure 3.

CFG=48 8X8 SMT OFF difference
250

200
150

100

0
50 v3_2.2 v3_3_0 v3_3_1 v3_4_a .

NEMO versions

seconds

Figure 3:
GYRE wall clock time difference between a NEMO
release and the previous one: resolution given by cfg=48;
64 processes on one node enabling SMT

The most significant increment occurs during
the transition from v3.3.1 to v3.4.a. The v3.4b
reduced the time with respect to the v3.4a.

Wall clock time - CFG=144 16X16
2900
2700
2500
2300
2100
1900
1700
1500

seconds

v3_2.2 v3_3 0 v3_3.1 v3_4_a v3_4 b
NEMO versions

Figure 4:
GYRE wall clock time: resolution given by cfg=144; 256
processes disabling SMT

The wall clock time behaviour for cfg=144 con-
firms the increment inserted at each new re-
lease. In the test reported in figure 4, the SMT
is disabled.

The behaviour observed for the configuration
with cfg=48 persists when cfg=144, as shown

Centro Euro-Mediterraneo sui Cambiamenti Climatici

Centro Euro-Mediterraneo sui Cambiamenti Climatici

CMCC Research Papers

CFG=144 16X16 difference
600
500
400

300
200
100
0
-100 v3_2 2 v3_3 0 v3_3 1 v3_4_a .

-200
-300

seconds

NEMO versions

Figure 5:
GYRE wall clock time difference between a NEMO
release and the previous one: resolution given by
cfg=144; 256 processes disabling SMT

Table 1
Function tracing along successive releases

Routine v3.22 v3.3.0 v3.3.1 v3.4a v3.4b

in figure 5. A more detailed analysis has been
made. We used the configuration cfg=48, SMT
OFF and a domain decomposition of 8x8. We
used gprof to trace each routine called by the
stp main routine along the different releases.
Table 1 gives the details at low level.

Considering only those routines that have a
variation greater than 5% during the transition
from one release to the next one, we can focus
our attention only on the last 9 routines and
namely: tra_zdf - tra_unswap - tra ldf - tra_adv -
zdf-tke - ldf_slp - dyn_zdf - dyn_vor - dyn_spg.

Figure 6 shows the wall clock time spent on
those routines and highlights how the time
changes during the evolution of the code.

Figure 7 better empathizes which routine is re-
sponsible for the increment of the wall clock
time during the transition from a release to the
next one. Only the difference in time is shown.

The increment of time during the transition from
v3.2.2 to v3.3.0 is due to the tra_ldf and zdf.tke
routines. The routines responsible for the incre-
ment of time during the transition from v3.3.0 to
v3.31 are tra_ldf and tra_adv. Finally the routine
dyn_zdf is the solely routine responsible for the
increment of time in the release v3.4a.

zdf-mxl 3.81 3.80 2.92 2.92 2.93
zdf_evd 11.13 11.43 10.21 10.95 10.29
zdf_bfr 0.43 0.32 0.46 0.38 0.61
tra_sbc 0.13 0.78 0.70 0.75 0.65
tra_gsr 1.31 5.16 511 511 5.16
tra_nxt 6.48 6.21 5.58 6.45 6.22
stp.ctl 2.20 2.49 2.47 2.35 2.42
ssh_wzv 16.30 15.88 15.57 16.46 16.09
ssh_nxt 0.05 0.08 0.08 0.12 0.10
sbc 3.98 4.75 4.65 4.46 4.33
iom_setkt 0 0 0 0 0
iom_close 0 0 0 0 0
eos.insitu 3.78 3.73 3.68 3.83 3.76
eos_bn2 10.41 9.89 8.38 8.08 8.20
dyn_nxt 6.64 6.21 6.33 6.53 6.48
dyn_Idf 9.64 9.74 10.09 10.14 9.76
dyn_hpg 7.09 7.25 5.60 8.98 6.09
dyn_bfr 0.63 0.59 0.38 0 0
dyn_adv 18.09 18.19 17.13 17.74 18.94
day 0 0 0.01 0.01 0
tra_zdf 32.97 43.26 28.36 48.79 29.67
tra_unsw. 0 14.00 13.97 0 0
tra_ldf 53.44 92.96 161.11 156.81 160.36
tra_adv 203.71 222.03 281.84 299.61 280.56
zdf_tke 74.73 105.87 11359 11536 123.78
Idf_slp 99.68 90.32 97.45 104.19 100.52
dyn_zdf 37.27 37.14 3798 214.11 186.08
dyn_vor 11.14 11.05 8.22 20.16 7.97
dyn_spg 22.90 22.20 34.20 32.99 33.52

Time spent in the main rountines
350

300
0 —trazdf_NMOD_tra_zdf_
—traswp_NMOD_tra_unswap_

200 traldf_NMOD_

7 ~—traadv_NMOD_tra_adv_
150 —adftke_NMOD_zdf_tke_
= Idfslp_NMOD_idf_slp_
100 —— - - dynzdf_NMOD_dyn_zdf_
- dynvor_NMOD_dyn_vor_

seconds

50 — — dynspg_NMOD_dyn_spg_
0 —— ———
vi22 vi3o viil v3da v3i4b
NEMO versions
Figure 6:

Wall clock time for each main routine

MFS CONFIGURATION

The performance comparison between NEMO
releases has been applied also to the MFS16
configuration [2]. This is a production configu-

Common Pitfalls Coding a Parallel Model

Delta time of the main routines during the transition from a version to the
next one

150
 trazdf_NMOD_tra_zdf_
& traswp_NMOD_tra_unswap_
100 traldf_NMOD_tra_ldf_
& traady_NMOD_tra_adv_
 zdftke_NMOD _zdif_the _
50 Idfslp_NMOD_ldf_slp_

jynzdt_NMOD_dyn_zdf_
I dynvor_NMOD_dyn_vor_
- | I | - dynspg_NMOD_dyn_spg_

3225330 B305331 Fais34a L] N

seconds

NEMO versions

Figure 7:
Difference in time of the main routines between
successive releases

ration with a scientific interest for CMCC. The
tests have been carried out with the following
data:

® Domain decomposition: 8x8

SMT: disabled (32 core per node)

Total number of nodes: 2

Number of time steps: 144

I/O: creation of output and restart file only
at the end of the simulation

The wall clock time between v3.3.1 and v3.4a
releases differs only for 5.7%. Having a look at
each routine we can note that the increment of
the execution time of the dyn_zdf routine is par-
tially balanced by a reduction of the execution
time of the tra_nxt and other routines. Figure 8
reports the timing only for those routines with
a difference greater then 5% of the execution
time measured in release v3.3.1

Table 2
Execution time

v3.3.1 v3.4b
104sec 110 sec

Delta time of the main routines during the transition from the v3.3.1 to v3.4b
NEMO versions

 dynzdf_NMOD_dyn_zdf_
& dynidf_NMOD_dyn_Idf_
traady_NMOD_tra_adv_
& sbcmod_NMOD_sbe_
 dynvor_NMOD_dyn_ver_
tranxt_NMOD_tra_nxt_

seconds
G N s o R N W s U O N o

NEMO versions

Figure 8:
Difference in time of the main routines between
successive releases using MFS configuration

Also for this configuration the inefficiencies pre-
viously described for dyn_zdf have a deep im-
pact on the performance. The examined con-
figuration does not activate any other routine
with relevant performance inefficiency. The de-
tailed values for each routine are reported in
the table 3.

Table 3
Delta Time from v3.3.1 to v3.4b for MFS configuration

Routine Time (secs)

dyn_zdf 6.61
dyn_Idf 1.28
obc_rad 0.53
zdf_tke 0.45
tra_adv -0.29
sbc -0.40
dyn_vor -0.94
tra_nxt -1.78

ANALYSIS

To identify exactly which is the reason of this in-
crement of time in dyn_zdf routine, we focused
the attention only on the releases v3.3.1 and
v3.4.a and only on the dyn_zdf routine. Actually
the dyn_zdf calls the dyn_zdf imp. We have in-
strumented a region within the dyn_zdf-imp for
both releases. The instrumented region ex-
cludes the calls to the wrk_array routines (that
has been introduced in v3.4a).

Centro Euro-Mediterraneo sui Cambiamenti Climatici

Centro Euro-Mediterraneo sui Cambiamenti Climatici B

CMCC Research Papers

Total execution time of instrumented code (wall time): 182.88082 seconds

HEREE Resource Usage Stotistics SEHRHHSE

Total amount of time in user mode
Total amount of time in system mode
Maximunm resident set size
Average shared memory use in text segment
Average unshared memory use in doto segment
Number of page faults without [/0 aoctivity @ 7468
Mumber of poge faults with I/0 activity : 8
Number of times process was swopped out]
Mumber of times file system performed INPUT a
Mumber of times file system performed QUTPUT : @

B]

a

Mumber of IPC messages sent B
Number of IPC messages received :

Mumber of signals delivered : 8
Mumber of woluntary context switches : 933
Mumber of involuntary context switches 111

dEERsE End of Resource Stotistics sSHRRRS

Instrumented section: 1 - Lobel: dyn_zdf inp - process: @
file: dynzdf imp.F98, lines: 82 <= 266

Count: 72

Wall Clock Time: 3.5948587 seconds

Total time in user mode: 3.57232854851871 seconds
Average duration: 8.8548845

Stondard deviation: 5.23728e-315

Set: 1

Counting duration: 3.898726357 seconds
PM_FPU_IFLOP (FPU executed one flop instruction)
PH_FPU_FM4 (FPU executed multiply-odd instruction)

PM_FPU_FSORT_FDIY (FPU executed FSORT or FDIV instruction) :

PM_CYC (Processor cycles)
PM_RUN_INST_CMPL (Run instructions completed)
PM_RUN_CYC (Run cycles)

Utilization rate

Flop 1
Flop rote (flops / WCT) H
Flops / user time H
FMA percentage

(a) v3.3.1

Instrumented section: 1 - Lobel: dyr, zdf inp - process: @
file: dynzdf imp.F28, lines: 82 < 266

Count.: 72

Wall Clock Time: 3.599114 seconds

Total time in user mode: 3.87651308205782 seconds
Averoge durotion: 8.8541544

Standord deviotion: 5.23892e-315

Set: 3

Counting duration: 3.398339757 seconds
PM_CYC (Processor cycles)
PM_LD_MISS_L1 (L1 D cache load misses)
PM_ST_MISS_L1 (L1 D coche store misses)
PM_INST_CMPL (Instructions completed) H
PM_RUN_INST_CMPL {Run instructions completed)
PM_RUN_CYC {Run cycles)

Utilization raote

MIPS :
Instructions per cycle H
Totol L2 data coche dccesses H
% accesses from L2 per cycle H
L2 traoffic :
L2 bandwidth per processor H

(c) v3.3.1

= 161.119662 seconds
1 B.483783 seconds
440848 Kbytes

1 389698 Kbytes¥sec

1 43993006 Kbytes¥sec

1835763208

: 273715208
556761672
18715433925
TZ2E698646
18295004672

99.441 %
318,248 Mf lop
a78.468 Hf lop/s
983.966 Mflopis

41.865 %

18235117538
BBE7335
284325782
TEZITIEELY
1226864323
15316854462

99.428 %
1852.675 MIPS
0.396
289.933 1
1.598 %
35392.232 MBytes
9676.993 MBytes/s

Total execution time of instrumented code (wall time): 125.444%05 seconds
#EHEE Resource Usage Statistics SHHESHEES

124.353644 seconds
B.423365 seconds
484712 Kbytes
412879 Kbytesksec
49748388 Kbytes*sec

Total anount of time in user mode

Total amount of time in system mode
Moximum resident set size

Averoge shared memory use in text segment
Average unshared memory use in dota segment

Humber of page faults without 1/0 activity 6843
Number of page foults with I/0 activity &1
Number of times process was swapped out 2]
Numsber of times file system performed INPUT [:]
Musber of times file system performed OUTPUT = @
Number of IPC messages sent a
Number of IPC messoges received : @
Mumber of signals delivered 18
Number of voluntory context switches : 1718
Number of inwoluntory context switches : 142

HEREEE End of Resource Statistics MHSHHSR

Instrumented section: 1 - Lebel: dyn zdf imp - process: B
Count.: 72

Wall Clock Time: 21.293118 seconds

Total time in user mode: 21.2B52213658476 seconds
Average duration: 8,295738

Standard deviation: 5.24284e-315

Set: 1
Counting duration: 4,511261185 seconds

PH_FPU_1FLOP (FPU executed one flop instruction) 855381668
PH_FPU_FMA (FPU executed multiply-odd instruction) 276525608
PM_FPU_FSORT_FDI¥ {FPU executed FSORT or FDIV instruction) B59E726872
PHM_CYC (Processor cycles) H 99998673320
PM_RUN_INST_CMPL (Run instructions completed) 112912725
PHM_RUN_CYC {(Run cvcles) 188126202339
Utilization rate 99.836 ¥

Flop B 3648.521 Mflop
Flop rate (flops / WCT) H 171,347 Mf lop/s
Flops / user time 171.629 Mf lop/s

LZ traffic
L2 bandwidth per processor

B6276.37¢ MBytes
2055.249 MBytes/s

FMA percentoge 45.900 ¥
(b) v3.4a

Instrumented section: 1 - Label: dyn zdf imp - process: @
file: dynzdi, inp.f28, lires: 94 <— 261

Count.: 72

Wall Clock Time: 21.194461 seconds

Total time in user mode: 21.14421A8726616 seconds

Average duration: B.294365

Standard deviation: 5.241%3-315
Set: 3
Counting duration: 4.413331665 seconds

PM_CYC {Processor cycles) 99462367945
PM_LD_MISS_L1 (L1 D coche lood misses) 317358531
PM_ST_MISS_LL {L1 D coche store misses) 143627523
PM_INST_CMPL (Instructions completed) : 7102544262
PM_RUN_INST_CMPL {Run instructions completed) H TLLZ770987
PH_RUN_CVC (Run cycles) H 99662106966
Utilization rote H] 99.763 X
MIPS H 335,113 MIPS
Instructions per cycle H a.871
Total L2 dota cache accesses B 461.816 M
% accesses from L2 per cycle H 8,464 %

(d) v3.4a

Figure 9:
Floating point operations (a and b) and L1 cache misses (c and d): MFS configuration

The configuration used for the instrumented
executable is characterized by cfg=48, a do-
main decomposition 8x8, SMT OFF and 72 to-
tal timesteps. We first checked if the increment
of time was due to new operations introduced
in the new release, we checked the total num-
ber of floating point operations (Flop counter)
using the HPM (High Performance Monitoring)
and we got the result in figure 9(a) and 9(b).
The total execution time in release v3.4a is
about 23 seconds greater than v3.3.1 and the
time spent within the instrumented section in re-
lease v3.4a reached 21.3 seconds against 3.9
seconds on the same region in release v3.3.1.
This confirms what has been observed with
gprof. The result says also that the manage-
ment of the work arrays does not have a deep
impact on the computing performance. The
most part of the time increment in the v3.4a
is due to dyn_zdf_imp routine. Having a look at
the total number of floating point operations,
the v3.4a executes less operations than v3.3.1
(3648.5Mflop against 3810Mflop). Hence the
new release reduces the number of flops and in
some way tries to optimize the execution. But
the execution rate of the floating point opera-
tions is drastically low with respect to the v3.3.1
(171.3Mflop/s against 978.5 Mflop/s). This is
typically due to a bad use of the memory hier-
archy.

We used the hardware counters to check the

DO jk = 1, jpkml ! Matrix
DO 33 = 2, jpiml
DO ji = fs_2, fs_jpiml ! vector apt.
zooef = - pzdt / fsedu(ii,ii.gk)
zzwi = zcoef * awmu (ji,jj,jk) / fse3uw(ji,ii.dk)
Zwi(31,33,3k) = zzwl * umask(ji,33,3k)
zzws = zooef * avmu (ji,]j,jk+1) / fseSuw(ii,ji,dkel)
zws(ji,3i,dk) = zzws * umask{ji,ji,jk+1)
2ud(31,33.3k) = 1o up - zwi(ii,33,0K) - zzws
END DO
END DO
END DO

Figure 10:
Nested loops in release v3.3.1

Common Pitfalls Coding a Parallel Model

L1 data cache misses (see figure 9(c) and 9(d)).
The results highlight that in the new release an
inefficiency due to the bad use of L1 and L2
caches has been introduced. The number of
L1 misses of the v3.4a is 2 order of magnitude
greater than the v3.3.1 (317,388,531 against
5,007,385); also the L2 data cache accesses
is doubled in the v3.4a (461M against 290M).
Having a look at the code, the lose of perfor-
mance due to the bad cache usage is quite
evident. The implementation of the dyn_zdf-imp
in the release v3.3.1 accesses the 3D array
sweeping the data following contiguous mem-
ory locations: as example see the snapshot in
figure 10 where the elements of the arrays avmu
and umask are accessed following the column
wise order, indeed the first index (ji) iterates
before the second index (jj) that iterates before
the third index (jk).

In release v3.4a the loops have been restruc-
tured and the ordered access to the memory
has been lost (see figure 11). In this case, the
innermost loop, iterates on jk that is not the first
index of the arrays.

Regarding the transition from v3.3.0 to v3.3.1,
that corresponds to the introduction of the dy-
namical memory allocation, the major impact
on performance can be seen on routines tra_ldf
and tra_adv. But, contrary to what happened
in the previous case where the code has been
restructured. In this case both routines are the

D0 1 =2, Jpiml
DO ji = fs_2, fs_jpinl | wector opt.
ikbuml = mbku(ii,jj)
zbfru = bfruadji,ji)

DO jk = 1, ikbuml
zooef = - p2dt / Fse3u(jl,jd,dk)
zwi(ii, 33,3k} = zeoef * avau(ii,ii,dk) / fseduww(ji,Ji, ik)
zws{ji,jj,jk) = zooef * avmuiji,jj,jk+1) / fseduw(ii,jj,jk+1)
zwd(ji,33,3k) = L._wp - 2wi(31,33,3k) - zws(Ji,33,3k)

END DO

Figure 11:
Nested loops in release v3.4a

Centro Euro-Mediterraneo sui Cambiamenti Climatici

A

Centro Euro-Mediterraneo sui Cambiamenti Climatici

CMCC Research Papers

same in v3.3.0 and v3.3.1 (apart for the calls to
wrk_in_use and to wrk_not_released functions in
v3.3.1). We focused on the tra_ldf that actually
has only one call to the tra_ldfiso routine (this is
a leaf routine). We instrumented a region that
excludes the calls to the work arrays functions.
Figure 12(a) and 12(b) reports the values of the
FLOP counters. The total number of floating
point operations is exactly the same for both
releases. This implies that the compiler per-
forms the same optimizations regarding to the
floating point operations. However the number
of completed instructions in the v3.3.1 is almost
twice the number of instructions of the v3.3.0.
This implies that the compiler introduces more
instructions (such as integer or load/store op-
eration).

Taking into account the counters related to the
cache misses, we can notice that there is not
an evident difference. The L1D cache misses
are of the same order of magnitude (see figure
12(c) and 12(d)). Once again we notice that the
number of instructions in v3.3.1 is almost dou-
ble even if the instruction rate (MIPS) for the
v3.3.1 is greater than v3.3.0.

Analyzing the list file produced by the compiler,
the transformations performed by the compiler
and the assembler code, we can notice that, the
access to an allocatable array (that is stored in
the heap memory instead of the stack memory)
produces a lot of register spilling that implies
an increase number of load and store instruc-
tions. To confirm this observation we can see
the counters related to the total number opera-
tions of the LSU (Load Store Unit): in v3.3.1 we
have 11398M operations against 7651M (see
figure 12(e) and 12(f)).

To conclude, the main reason for the perfor-
mance decrement during the transition from
v3.3.0 to the v3.3.1 release is due to the com-
piler that is not able to make the same opti-
mizations when the code uses allocatable ar-
rays and when the number of iterations of the
loops are not known at compile time. The lack
of performance observed during the transition
to v3.4a release is mainly due to a worst use
of the cache. The management of the work
arrays, introduced in v3.4a, has not an evident
impact on the performance.

Common Pitfalls Coding a Parallel Model

Instrumented section:z 3 - Label: tra, ldf, iso - process: @
, lines: 126 <-> 299

Wall Clock Time: 9.438277 ssconds

Total time in user wode: 9.391B8283545918 seconds
Averoge duration: B8.138976

Standard deviation: 5.24181e-315

Setr 1

Counting durotion: 1.839853796 seconds

PM_FPU_1FLOP (FPU executed one flop instruction) B 6758420192
PHM_FPU_FHA (FPU executed multiply-odd instruction) 279426240
PM_FPU_FSORT_FDIY {FPU executed FSORT or FDIY mstructwn) 745476488
PM_CYC (Processor cycles) : 44175653658
PM_RUN_THST_CMPL (Run instructions completed) H 28565471413
PM_RUN_CYC (Run cycles) : 44337629573
Utilization rate : 99,584 W

Flop : 18329.249 Mflop

Flop rate {flops / WCT) 1895.328 Mf lop/s
Flops ¢ user time 1899,988 Mf lop/s
FM4 percentoge : 7.987 ®

(a) v3.3.0

Instrumented section: 3 - Label: - process: A
file: traldf,.izg.F98, lines: 126
Count: 72

Wall Clock Time: 9.368282 seconds

Total time in user mode: 9.3440485939%6258 seconds
Averoge duration: 8.136115

Standard deviation: 5.2397%e-315

Set: 3

Counting duration: 8.977843166 seconds

PM_CYC (Processor cycles) B 43958167766
PM_LD_MISS_L1 (L1 D coche load misses) H 12237231
PM_ST_MISS_L1 (L1 D coche store misses) H 631162639
PM_INST_CMPL (Instructions completed) 1 20549971697
PM_RUN_INST_CHPL (Run instructions completed) ' 20554549684
PM_RUN_CYC (Run cycles) : 44857518810
Utilization rate 99.750 ¥
MIPS 2193.869 MIPS
Instructions per cycle 8,467
Total LZ data cache gccesses : 643.400 M

¥ gccesses from L2 per cycle 2 1.484 %
Lz traoffic 75540 .623 MBytes

L2 bondwidth per processor §383.610 MBytes/s

(c) v3.3.0

Instrumented section: 3 - Laobel: tro ldf_iso - process: @
file: traldf_iz0.f98, lines: 126 «-> 329

Count: 7.
Wall Clock Time: 9.326323 seconds

Total time in user mode: 9.26028388463435 seconds
Average durotion: B.128632

Standard deviation: 5.24483e-315

Exclusive duration: B.BSB363 seconds

Set: 2

Counting duration: A.928509068 seconds

PH_INST_CMPL (Instructions completed) 20552281216
PH_LSU_LDF {LSU executed Floating Point lood mstructwn) 6794882768
PM_FPU_STF (FPU executed store instruction) 856738448
PHM_CYC (Processor cycles) H 435565996017
PHM_RUN_INST_CMPL (Run instructions completed) ! 20558409852
PH_RUN_CYC (Run cycles) E 43775748295
Utilization rate 99.356

MIPS 2283.685 MIPS
Instructions per cvcle a.472
Floating point load and store operations H T658,783 M
Instructions per flooting point lood/store H Z.686

(e) v3.3.0

Instrumented section: 3 - Label: trg ldf_isp - process: 8
file: Idf, 180.F90, lines: 129 <--x 301

Count: 72

Wall Clock Time: 15.459546 seconds

Total time in user mode: 15,4158412672024 seconds
Average durction: B.214855

Standord deviotion: 5.24%6e-315

Set: 1

Counting durction: 7.878332222 seconds

PM_FPU_IFLOP (FPU executed one flop instruction)
PM_FPU_FMA {FPU executed multiply-odd instruction)
PM_FPU_FSORT_FDIY (FPU executed FSORT or FDIV instruction)
PM_CYC (Processor cycles)

PM_RUN_INST_CMPL {Run instructions completed)

PH_RUN_CYC {Run cycles)

Utilization rats :

Flop H 1
Flop rate (flops / WCT)

Flops / user time

FMA percentoge

(b) v3.3.1

Instrumented section: 3 - Label: trg ldf iso - process: B
file: troldf,.izso.F98, lines: 129 <> 361
Count: 72

Wall Clock Time: 15.564379 seconds

Total time in user mode: 15.5147776346A58 seconds
Average duration: B.216172

Standard deviation: 5.2474e-315

Set: 3

Counting duration: 7.174136792 seconds

FM_CYC (Processor cycles) :
PM_LD_MISS_L1 (L1 D cache load misses) E
PM_ST_MISS_L1 (L1 [cache store misses)
PM_INST_CMPL {Instructions completed) :
PM_RUN_INST_CMPL (Run instructions completed) :
PM_RUN_CYC (Run cycles) B

Utilization rate i
NIPS i
Instructions per cyvcle

Total L2 data cache accesses

occesses from L2 per cycle H
L2 traffic i
L2 bandwidth per processor

(d) v3.3.1

Instrumented section: 3 - Lobel: trg ldf iso - process: 8
file), lines: 129 <> 331

Count.z
Wall Clock Time: 15.887186 seconds

Total time in user mode: 14.9534778428493 seconds
Average durction: 8.208432

Stondard deviotion: 5.24507e-315

Exclusive durotion: B.B62128 seconds

Set: 2

Counting duration: 6.601828792 seconds

PM_INST_CMPL {Instructions completed)

PM_LSU_LDF (LSU executed Floating Point loaod instruction)
PM_FPU_STF (FPU executed store instruction)

PH_CYC (Processor cycles)

PM_RUN_INST_CMPL (Run instructions completed)

PH_RUN_CYC (Rum cycles)

Utilization rate E
MIPS :
Instructions per cycle H
Floating point lood ond store operations :
Instructions per flooting point lood/store B

(f) v3.3.1

Figure 12:
Floating point operations (a and b), L1 cache misses (c and d) and LSU operations (e and f): MFS configuration

6768494368
279426240
T4E4TE4EE

TZE16117415
38116579793
72723619336

99.653 ¥
A329.253 Mf lop
667.716 Mf lop/s
678841 Mf lop/s

7.987 ¥

72981514934
16435471
636196567
35185347914
36118354642
73184223783

99.651 ®
2448.239 MIPT
B.522
B51.635 M
B8.893 &
79545.265 MBvtes
5118.727 MBvtesds

38019810436
B678442398
2727831312

THIE4TITEY

38838961269

70585159457

99.676 B
2533.401 MIPS

A.548
11397.524 M

3.336

matic

Centro Euro-Mediterraneo sui Cambiamenti Cli

Centro Euro-Mediterraneo sui Cambiamenti Climatici

CMCC Research Papers

Bibliography

[1] G. Madec. Nemo ocean engine. Technical
Report Technical Report 27 ISSN No 1288-
1619, Institut Pierre-Simon Laplace (IPSL),
2008.

[2] P. Oddo, M. Adani, N. Pinardi, C. Fra-
tianni, M. Tonani, and D. Pettenuzzo. A
nested atlantic-mediterranean sea general
circulation model for operational forecast-
ing. Ocean Sci., 5(4):461-473, 2009.

© Centro Euro-Mediterraneo sui Cambiamenti Climatici 2012
Visit www.cmcec.it for information on our activities and publications.

The Euro-Mediteranean Centre on Climate Change is a Ltd Company with its registered office and
administration in Lecce and local units in Bologna, Venice, Capua, Sassari, Viterbo, Benevento and Milan.
The society doesn'’t pursue profitable ends and aims to realize and manage the Centre, its promotion, and Centro Euro-Mediterraneo

research coordination and different scientific and applied activities in the field of climate change study. sul Gambizmenti Climatici

