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SUMMARY The process for developing a climate model often involves a
wide community of developers. All of the code releases can be classified
into two groups: (i) improvements and updates related to modeling aspects
(new parameterizations, new and more detailed equations, remove of
model approximations, and so on); (ii) improvement related to the
computational aspects (performance enhancement, porting on new
computing architectures, fixing of known bugs, and so on). The developing
process involves both programmers, scientific experts, and rarely also
computer scientists. The new improvements and developments are mainly
focused on the scientific aspects and, in second stage, on the computing
performance. The developments to improve the physic model often does
not care about its impacts on the computational performances. This poses
some issue in the developing process; after a new implementation, the code
must be revised after new implementation to face out with the performance
issues. In this work we analyze 5 different releases starting from the NEMO
v3.2 (to be considered as our reference) and evaluate how new
developments impact on the computational performances.
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INTRODUCTION

The evolution and reliability of NEMO [1] are or-
ganized and controlled by a European Consor-
tium created in 2008 between CNRS (France),
Mercator-Ocean (France), NERC (UK), UKMO
(UK) and, since 2011, CMCC (Italy) and
INGV(Italy). The purpose of the Consortium
is to set up appropriate arrangements for the
successful and sustainable development of the
NEMO System as a well-organized, state-of-
the-art ocean model code system suitable for
both research and operational work. In order
to achieve this goal the Consortium Members
have agreed on:

the resources they will commit each year
to the NEMO System Team which will
maintain the code;

the arrangements for managing and co-
ordinating the work of the NEMO System
Team and for setting its priorities;

the arrangements for the Intellectual
Property rights over the Software to make
the code freely available under an appro-
priate version of the CeCILL Free Soft-
ware License with the aim of attracting a
critical mass of scientists to use the soft-
ware and contribute developments to be
incorporated into it.

The NEMO System Team is in charge of the
maintaing of the reference NEMO code and
its distribution through the NEMO System web
server. The NEMO System Team shall carry
out the Work Plan proposed by the Develop-
ers Committee and approved by the Steering
Committee. This Work Plan will include:

incorporation into NEMO System of new
developments (scientific or technical);

reorganization of the code to improve its
readability, orthogonality or structure;

optimization of NEMO System on the ar-
chitectures available in the Consortium;

maintenance of the scientific paper and
on-line documentation;

configuration control of the available ver-
sions of NEMO System;

testing and release of new versions (typi-
cally once or twice a year);

making NEMO System readily available
to the scientific community and to the
Consortium Members;

providing assistance to new users;

practical support for user meetings (held
typically once a year);

assistance in scientific development in an
area of high priority.

The Work Plan, describing the work which each
of the Consortium Members will contribute to
the NEMO development, is updated annually
according to the following schedule:
31 March: Report of work by the NEMO
System Team delivered by the NEMO Project
Manager to Steering Committee;
Not later than one month before the Steering
Committee: draft of Work-Plan for following
year prepared by NEMO Project Manager and
approved by NEMO Scientific Leader, following
consultation of Developers Committee and
discussion with all Consortium Members;
Not later than the 30th of November: Work-
Plan for following year agreed by Steering
Committee;
Before the end of the year: All schedules to
Agreement updated for following year.
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The developing process involves both program-
mers, modeling experts, and rarely also com-
puter scientists. The improvements and new
developments are mainly focused on modeling
and, in a second stage, on computing perfor-
mance. This often poses some issue in the
developing process where the code must be re-
vised after new implementations to face out with
the performance issues. In this work we take 5
different releases starting from the NEMO v3.2
(to be considered as our reference) and evalu-
ate how new modeling developments impact on
the computational performances. The NEMO
releases are shortly described below:

nemo v3.2.2 as reference

nemo v3.3.0 new developments include: (i)
merge between TRA and TRC; (ii) intro-
duction of a modified leapfrog-Asselin fil-
ter time stepping scheme; (iii) additional
scheme for iso-neutral mixing; (iv) addi-
tion of a Generic Length Scale vertical
mixing scheme; (v) addition of the atmo-
spheric pressure as an external forcing
on both ocean and sea-ice dynamics; (vi)
addition of a diurnal cycle on solar radi-
ation; (vii) river runoffs added through a
non-zero depth, and having its own tem-
perature and salinity; (viii) CORE II nor-
mal year forcing set as the default forcing
of ORCA2-LIM configuration; (ix) gener-
alization of the use of fldread for all input
fields; (x) optional application of an as-
similation increment.

nemo v3.3.1 this version matches with 3.3.0
code with dynamic allocation added. The
main implications are: (i) the number of
processors are now part of the namelist
nam mpp; (ii) the definition of the config-
uration parameters in par *h90 have to
be slightly changed; (iii) the coding rules
have been updated.

nemo v3.4a this is a major release and rel-
evant improvements have been added.
From scientific point of view: (i) new pres-
sure gradient suitable for s-coordinate;
(ii) completion of Griffies iso-neutral diffu-
sion; (iii) Pacanowski-Philander scheme
for computation of Ekman depth added;
(iv) a new bulk formulae added; (v) a drag
coefficient compute by wave model intro-
duced; (vi) tidal potential forcing added;
(vii) Netpune effect parametrization; (viii)
point to point MPI communication for
north fold; (ix) sub time stepping for bio-
geochemistry models when using non-
linear free surface allowed; (x) improve-
ment in PISCES.
From coding point of view some simplifi-
cation have been made: (i) simplification
of dynamic allocation; (ii) completion of
merging between TRA and TRC; (iii) more
flexible definition of BDY input data; (iv)
simplification of interfaces toward biogeo-
chemical models; (v) interface with CICE
in coupled mode; (vi) use of fldread to
read/interpolate data for passive tracers
and dynamical input data for OFFLINE
configurations.

nemo v3.4b this version corresponds to 3.4a
code with some performance improve-
ment on dynamical allocation using the
stack: no explicit coding nor POINTER.

DEFINITION OF TESTS

Tests have been done using the GYRE con-
figuration as equivalent to 1/4◦ (cfg=48) and
1/12◦ (cfg=144) resolutions. In our case the
GYRE configuration makes no I/O (nor write
nor restart), and runs 720 time steps. The
CPU time sums CPU time in seconds for time
steps between 2 and 719. In the namelist,
nn bench=1, rn rdt = 180. Cpp keys: key gyre
key dynspg flt key ldfslp key zdftke key mpp mpi.
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COMPUTING ENVIRONMENT

Tests have been performed on the IBM Power6 cluster at CMCC. The compiler name, flags and
environment variables, chosen to improve the performance, are reported in the following.

Computer used:

Name : Calypso (calypso.cmcc.it)

Architecture : IBM P575 node (32 cores Power6 4.7GHz per node)

Compiler : mpxlf90 r

Compiler flags : -qstrict -qfree=f90 -O3 -qrealsize=8 -qextname -qsource -q64 -qlargepage -qmaxmem=-1
-qarch=pwr6 -qtune=pwr6 -q64

Environment variables :
export MP INSTANCES=4
export MP WAIT MODE=poll
export MP POLLING INTERVAL=30000000
export MP SHARED MEMORY=yes
export MP EUILIB=us
export MP EUIDEVICE=sn all
export LDR CNTRL=TEXTPSIZE=64K@STACKPSIZE=64K@DATAPSIZE=64K
export MP TASK AFFINITY=core
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RESULTS

The wall clock time increases at each new re-
lease except for the last one, as shown in figure
1. The biggest increment appears between re-
lease v3.3.1 and v3.4a. The wall clock time for
the release v3.4.a is almost double with respect
to the wall clock time of the v3.2.2. To evaluate
the use of SMT, a decomposition 8x8 has been
used. Enabling SMT, all of the 64 processes
have been mapped on one node. Disabling
SMT, 2 nodes have been allocated. Figure 2
shows that using half number of processors,
the CPU time is less than double.

Figure 1:
GYRE wall clock time: resolution given by cfg=48; 64
processes (on one node enabling SMT, on two nodes

disabling SMT)

Figure 2:
SMT evaluation. One node has been used either with 32

and 64 processes

In the previous test the number of nodes has

been fixed to 1 and the decomposition has been
changed. The results show that the a comput-
ing node is better exploited when SMT is active.
The difference of each new release with respect
to the previous one is reported in figure 3.

Figure 3:
GYRE wall clock time difference between a NEMO

release and the previous one: resolution given by cfg=48;
64 processes on one node enabling SMT

The most significant increment occurs during
the transition from v3.3.1 to v3.4.a. The v3.4b
reduced the time with respect to the v3.4a.

Figure 4:
GYRE wall clock time: resolution given by cfg=144; 256

processes disabling SMT

The wall clock time behaviour for cfg=144 con-
firms the increment inserted at each new re-
lease. In the test reported in figure 4, the SMT
is disabled.

The behaviour observed for the configuration
with cfg=48 persists when cfg=144, as shown
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Figure 5:
GYRE wall clock time difference between a NEMO
release and the previous one: resolution given by

cfg=144; 256 processes disabling SMT

in figure 5. A more detailed analysis has been
made. We used the configuration cfg=48, SMT
OFF and a domain decomposition of 8x8. We
used gprof to trace each routine called by the
stp main routine along the different releases.
Table 1 gives the details at low level.

Considering only those routines that have a
variation greater than 5% during the transition
from one release to the next one, we can focus
our attention only on the last 9 routines and
namely: tra zdf - tra unswap - tra ldf - tra adv -
zdf tke - ldf slp - dyn zdf - dyn vor - dyn spg.

Figure 6 shows the wall clock time spent on
those routines and highlights how the time
changes during the evolution of the code.

Figure 7 better empathizes which routine is re-
sponsible for the increment of the wall clock
time during the transition from a release to the
next one. Only the difference in time is shown.

The increment of time during the transition from
v3.2.2 to v3.3.0 is due to the tra ldf and zdf tke
routines. The routines responsible for the incre-
ment of time during the transition from v3.3.0 to
v3.31 are tra ldf and tra adv. Finally the routine
dyn zdf is the solely routine responsible for the
increment of time in the release v3.4a.

Table 1
Function tracing along successive releases

Routine v3.2.2 v3.3.0 v3.3.1 v3.4a v3.4b
zdf mxl 3.81 3.80 2.92 2.92 2.93
zdf evd 11.13 11.43 10.21 10.95 10.29
zdf bfr 0.43 0.32 0.46 0.38 0.61
tra sbc 0.13 0.78 0.70 0.75 0.65
tra qsr 1.31 5.16 5.11 5.11 5.16
tra nxt 6.48 6.21 5.58 6.45 6.22
stp ctl 2.20 2.49 2.47 2.35 2.42
ssh wzv 16.30 15.88 15.57 16.46 16.09
ssh nxt 0.05 0.08 0.08 0.12 0.10
sbc 3.98 4.75 4.65 4.46 4.33
iom setkt 0 0 0 0 0
iom close 0 0 0 0 0
eos insitu 3.78 3.73 3.68 3.83 3.76
eos bn2 10.41 9.89 8.38 8.08 8.20
dyn nxt 6.64 6.21 6.33 6.53 6.48
dyn ldf 9.64 9.74 10.09 10.14 9.76
dyn hpg 7.09 7.25 5.60 8.98 6.09
dyn bfr 0.63 0.59 0.38 0 0
dyn adv 18.09 18.19 17.13 17.74 18.94
day 0 0 0.01 0.01 0
tra zdf 32.97 43.26 28.36 48.79 29.67
tra unsw. 0 14.00 13.97 0 0
tra ldf 53.44 92.96 161.11 156.81 160.36
tra adv 203.71 222.03 281.84 299.61 280.56
zdf tke 74.73 105.87 113.59 115.36 123.78
ldf slp 99.68 90.32 97.45 104.19 100.52
dyn zdf 37.27 37.14 37.98 214.11 186.08
dyn vor 11.14 11.05 8.22 20.16 7.97
dyn spg 22.90 22.20 34.20 32.99 33.52

Figure 6:
Wall clock time for each main routine

MFS CONFIGURATION

The performance comparison between NEMO
releases has been applied also to the MFS16
configuration [2]. This is a production configu-
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Figure 7:
Difference in time of the main routines between

successive releases

ration with a scientific interest for CMCC. The
tests have been carried out with the following
data:

Domain decomposition: 8x8

SMT: disabled (32 core per node)

Total number of nodes: 2

Number of time steps: 144

I/O: creation of output and restart file only
at the end of the simulation

The wall clock time between v3.3.1 and v3.4a
releases differs only for 5.7%. Having a look at
each routine we can note that the increment of
the execution time of the dyn zdf routine is par-
tially balanced by a reduction of the execution
time of the tra nxt and other routines. Figure 8
reports the timing only for those routines with
a difference greater then 5% of the execution
time measured in release v3.3.1

Table 2
Execution time

v3.3.1 v3.4b
104 sec 110 sec

Figure 8:
Difference in time of the main routines between
successive releases using MFS configuration

Also for this configuration the inefficiencies pre-
viously described for dyn zdf have a deep im-
pact on the performance. The examined con-
figuration does not activate any other routine
with relevant performance inefficiency. The de-
tailed values for each routine are reported in
the table 3.

Table 3
Delta Time from v3.3.1 to v3.4b for MFS configuration

Routine Time (secs)
dyn zdf 6.61
dyn ldf 1.28
obc rad 0.53
zdf tke 0.45
tra adv -0.29

sbc -0.40
dyn vor -0.94
tra nxt -1.78

ANALYSIS

To identify exactly which is the reason of this in-
crement of time in dyn zdf routine, we focused
the attention only on the releases v3.3.1 and
v3.4.a and only on the dyn zdf routine. Actually
the dyn zdf calls the dyn zdf imp. We have in-
strumented a region within the dyn zdf imp for
both releases. The instrumented region ex-
cludes the calls to the wrk array routines (that
has been introduced in v3.4a).
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(a) v3.3.1 (b) v3.4a

(c) v3.3.1 (d) v3.4a

Figure 9:
Floating point operations (a and b) and L1 cache misses (c and d): MFS configuration
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The configuration used for the instrumented
executable is characterized by cfg=48, a do-
main decomposition 8x8, SMT OFF and 72 to-
tal timesteps. We first checked if the increment
of time was due to new operations introduced
in the new release, we checked the total num-
ber of floating point operations (Flop counter)
using the HPM (High Performance Monitoring)
and we got the result in figure 9(a) and 9(b).
The total execution time in release v3.4a is
about 23 seconds greater than v3.3.1 and the
time spent within the instrumented section in re-
lease v3.4a reached 21.3 seconds against 3.9
seconds on the same region in release v3.3.1.
This confirms what has been observed with
gprof. The result says also that the manage-
ment of the work arrays does not have a deep
impact on the computing performance. The
most part of the time increment in the v3.4a
is due to dyn zdf imp routine. Having a look at
the total number of floating point operations,
the v3.4a executes less operations than v3.3.1
(3648.5Mflop against 3810Mflop). Hence the
new release reduces the number of flops and in
some way tries to optimize the execution. But
the execution rate of the floating point opera-
tions is drastically low with respect to the v3.3.1
(171.3Mflop/s against 978.5 Mflop/s). This is
typically due to a bad use of the memory hier-
archy.
We used the hardware counters to check the

Figure 10:
Nested loops in release v3.3.1

L1 data cache misses (see figure 9(c) and 9(d)).
The results highlight that in the new release an
inefficiency due to the bad use of L1 and L2
caches has been introduced. The number of
L1 misses of the v3.4a is 2 order of magnitude
greater than the v3.3.1 (317,388,531 against
5,007,385); also the L2 data cache accesses
is doubled in the v3.4a (461M against 290M).
Having a look at the code, the lose of perfor-
mance due to the bad cache usage is quite
evident. The implementation of the dyn zdf imp
in the release v3.3.1 accesses the 3D array
sweeping the data following contiguous mem-
ory locations: as example see the snapshot in
figure 10 where the elements of the arrays avmu
and umask are accessed following the column
wise order, indeed the first index (ji) iterates
before the second index (jj) that iterates before
the third index (jk).
In release v3.4a the loops have been restruc-
tured and the ordered access to the memory
has been lost (see figure 11). In this case, the
innermost loop, iterates on jk that is not the first
index of the arrays.
Regarding the transition from v3.3.0 to v3.3.1,

that corresponds to the introduction of the dy-
namical memory allocation, the major impact
on performance can be seen on routines tra ldf
and tra adv. But, contrary to what happened
in the previous case where the code has been
restructured. In this case both routines are the

Figure 11:
Nested loops in release v3.4a
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same in v3.3.0 and v3.3.1 (apart for the calls to
wrk in use and to wrk not released functions in
v3.3.1). We focused on the tra ldf that actually
has only one call to the tra ldf iso routine (this is
a leaf routine). We instrumented a region that
excludes the calls to the work arrays functions.
Figure 12(a) and 12(b) reports the values of the
FLOP counters. The total number of floating
point operations is exactly the same for both
releases. This implies that the compiler per-
forms the same optimizations regarding to the
floating point operations. However the number
of completed instructions in the v3.3.1 is almost
twice the number of instructions of the v3.3.0.
This implies that the compiler introduces more
instructions (such as integer or load/store op-
eration).
Taking into account the counters related to the
cache misses, we can notice that there is not
an evident difference. The L1D cache misses
are of the same order of magnitude (see figure
12(c) and 12(d)). Once again we notice that the
number of instructions in v3.3.1 is almost dou-
ble even if the instruction rate (MIPS) for the
v3.3.1 is greater than v3.3.0.

Analyzing the list file produced by the compiler,
the transformations performed by the compiler
and the assembler code, we can notice that, the
access to an allocatable array (that is stored in
the heap memory instead of the stack memory)
produces a lot of register spilling that implies
an increase number of load and store instruc-
tions. To confirm this observation we can see
the counters related to the total number opera-
tions of the LSU (Load Store Unit): in v3.3.1 we
have 11398M operations against 7651M (see
figure 12(e) and 12(f)).
To conclude, the main reason for the perfor-
mance decrement during the transition from
v3.3.0 to the v3.3.1 release is due to the com-
piler that is not able to make the same opti-
mizations when the code uses allocatable ar-
rays and when the number of iterations of the
loops are not known at compile time. The lack
of performance observed during the transition
to v3.4a release is mainly due to a worst use
of the cache. The management of the work
arrays, introduced in v3.4a, has not an evident
impact on the performance.
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(a) v3.3.0 (b) v3.3.1

(c) v3.3.0 (d) v3.3.1

(e) v3.3.0 (f) v3.3.1

Figure 12:
Floating point operations (a and b), L1 cache misses (c and d) and LSU operations (e and f): MFS configuration
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