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SUMMARY To produce regional climate scenarios, traditionally, the
statistical downscaling has been considered as an alternative to dynamical
downscaling. However, the use of the two kinds of downscaling approaches
together consents, at least to some extent, to combine their advantages.
This report presents the preliminary results of combined downscaling
methods for precipitation. The dynamical downscaling is the COSMO-CLM
regional climate model applied to ERA40 Reanalysis over the control period
1971-2000. The statistical post-processing of the COSMO-CLM outputs is
performed through three different methods following the MOS (Model
Output Statistic) approach: linear-scaling, quantile mapping and MOS
analogs. The performances of the RCM and of the joint RCM-MOS
simulations are evaluated in terms of spatial similarity of three ETCCDI
indices (characterizing total precipitation, number of rainy days and
maximum precipitation) between observed dataset and downscaled fields
at seasonal scale. Three Italian test cases have been considered: Orvieto,
Po river basin, and Sardinia. Preliminary results indicate that the application
of MOS techniques generally improves the performances of the
COSMO-CLM model, regardless the season or the index considered, and,
among the MOS methods, better results have been generally obtained with
the quantile mapping technique.
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INTRODUCTION

Developing regional climate scenarios is a key
problem for climate change impact/adaptation
studies, especially for geographically complex
and heterogeneous regions that are sensible to
climate change. Italy, a typical Mediterranean
region, is one of the most vulnerable regions
in Europe to natural hazards relate to precipi-
tation like droughts, floods and landslides [7].
These reasons have motivated this study that
has been conducted within the framework of
the Italian project GEMINA. Its main objective
is to develop regional scenarios to support mit-
igation and adaptation policies [30].

Usually, two different methodologies are used
to downscaling the General Climate Models
(GCMs) outputs: (i) the dynamical downscal-
ing, that is based on high resolution (e.g. 10
km) Regional Climate Models (RCMs, [9]), or
(ii) the statistical downscaling techniques [29, 1],
that are based on statistical models that exploit
the historical relationship between large-scale
GCM variables (the predictors, e.g. 500mb
geopotential) and local variables (the predic-
tands, e.g. precipitation at a given location).

In this study we test an alternative approach
combining these two downscaling methods to-
gether. This hybrid method constitutes an ad-
vanced calibration method for end-users, allow-
ing the calibration of RCM outputs for climate
change impact studies. The idea is to apply the
statistical post-processing directly to the RCM
outputs following the Model Output Statistics
(MOS) approach [15]. In this case the predic-
tor is directly the RCM output variable (i.e. the
RCM precipitation) which is calibrated to match
the observed variable (local precipitation at a
station or interpolated grid point). Note that
the RCM post-processing methods are still in
a rather premature state of development, and
substantial improvements are currently under
development [15].

Specifically, we evaluate three different MOS
(Model Output Statistics) methods to refine the
precipitation output of the COSMO-CLM model
over Italy. These three methods are of increas-
ing complexity: (i) the simple linear-scaling
(LS), (ii) the quantile mapping (QM), and (iii)
the MOS Analog method (MA), recently pro-
posed by Turco et al. (2011, [27]). Each
method has its strengths and its weakness [22].
The simple linear-scaling is routinely applied
in climate change studies when only climatic
means are needed. More sophisticated meth-
ods are used when other statistical moments
are required. The quantile mapping tries to
correct the distribution function of the RCM val-
ues and it is largely used for climate change
impact studies. Finally, we test the MOS Ana-
log method, which proved to perform well in
regions of similar climate like Spain, it is par-
simonious (so that one can assume that it is
also robust to climate change conditions) and
maintains the spatial coherence of the daily pre-
cipitation fields (which is important for hydroge-
ological impact studies).

To minimize the error relate to the GCM model,
this comparison is based on the "perfect" global
model (ERA40 reanalysis), downscaled by the
COSMO-CLM. Then, the three MOS methods
are applied over three Italian areas (Figure 1):
(i) Po river basin, (ii) Orvieto and (iii) Sardinia.
These sites are interesting domains to study
the impact of climate change on the hydro-
geological risk, and, besides, they are also cov-
ered by high-resolution data over the baseline
period 1971-2000.

Orvieto is an historical town located at about
100km north of Rome. Orvieto represents an
excellent case study to estimate the impact of
climate change on landslide risk, mainly for
these two reasons: i) it appears quite represen-
tative, as regards hydro-mechanical properties
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of involved soils and rainfall regime, of many
other central southern Italian Apennines cases;
ii) moreover, over the last years, the "in situ"
soils have been deeply investigated by labo-
ratory tests, displacements and soil pore water
pressures have been continuously monitored at
several observation points and soil depths while
numerical analysis aimed to characterize and
reproduce the observed trends have been per-
formed ([25], [24], [26],[12], [14]). Specifically,
to detect how the rainfall regime can affect soil
pore water pressure and hence the movement
rates, the observed data of daily precipitation
related to Orvieto station are used. It is located
on top of tuff slap (315 m a.s.l.) and, surely,
represents the nearest measurement point to
slopes affected by instability phenomena.

The choice of the Po river as case study is jus-
tified by its national and European relevance.
The Po river is the longest (652 km) in Italy and,
with an area of about 71000 km2 in Italy and
about 3000 km2 between France and Switzer-
land, its basin is the widest of Italy. This basin
is characterized by a complex orography, with
around 50% of its surface is covered by moun-
tains (Alps in the north and Apennines in the
south). The Po basin is one of the mostly pop-
ulated areas in Italy, with about 16 million in-

habitants, mainly concentrated in the cities like
Milan and Turin, and one of the most important
Italian areas in terms of productive enterprises
and water utilization. This basin is prone to hy-
drogeological disasters related to severe floods
and droughts.

Finally, the last chosen domain is Sardinia.
Sardinia is an island located in the Western
Mediterranean Sea characterised by a dry sum-
mer and a rather wet winter with highly irreg-
ular precipitations, both in time ([5]), and in
space [2, 5], due to its position and the pres-
ence of high and steep mountains near the sea.
Besides this area is highly vulnerable to flash
flooding and landslides ([3]). This is a challeng-
ing domain to perform a precipitation downscal-
ing since this field is highly variable in this rel-
atively small area, and our predictands are 39
stations of daily rainfall records, representative
of the local scale.

The present study is organized as follows. First,
the model data and the three MOS methods
are presented. Then, the Sections ”Orvieto”,
”Po river basin” and ”Sardinia” describe the ob-
served data used and the results for these ar-
eas. Finally, Section ”Conclusion” resumes the
main findings of this report.
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Po basin

Orvieto

Sardinia

Figure 1:
The three domains of the study: (i) Po river basin, (ii) Orvieto, (iii) Sardinia. The black circles indicate the gridpoints of the

COSMO-CLM model over these areas used in the MOS approaches. The black filled square indicates the position of the Orvieto
station.
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DATA AND METHODS

COSMO-CLM REGIONAL CLIMATE
MODEL

In this study, we consider the ERA40-driven
COSMO-CLM model [19] for the baseline
period 1971-2000. The COSMO-CLM re-
gional climate model is the climate version of
the COSMO-LM non-hydrostatic limited area
model [20]. A detailed description of this
RCM and its evaluation is given in Zollo et
al. (2012, [31]). The horizontal resolution is
0.0715◦ (about 8 km). The model domain is 3◦-
20◦E / 36◦-50◦N. Table 1 summarizes the main
features of the COSMO-CLM set-up.

Driving data ERA40 Reanalysis
Horizontal resolution 0.0715◦ (about 8km)
Num. of grid points 224 x 230
Num. of vertical levels in the atm. 40
Num. of soil levels 7
Soil scheme TERRA ML
Time step 40 s
Melting processes yes
Convection scheme TIEDTKE
Frequency of radiation computation 1 hour
Time integration Runge-Kutta (3rd ord.)
Frequency update boundary cond. 6 hours

Table 1
Main features of the COSMO-CLM set-up.

MOS METHODS

Here we describe the three MOS methods that
we compare: (i) the linear-scaling, (ii) the quan-
tile mapping, and (iii) the MOS Analog method.

The linear-scaling approach consists in correct-
ing the monthly differences between observed
and simulated values:

P ∗(d) = P (d) · µm(Pobs(d))

µm(Prcm(d))
(1)

where, for the day d, P ∗ is the corrected value,
P (d) is the original daily precipitation value from

the RCM, µm(Pobs(d)) is the observed monthly
average for the month m, and µm(Prcm(d)) is
the simulated monthly average.

The quantile mapping correction, instead, tries
to adjust all the moments of the probability dis-
tribution function (PDF) of the precipitation field.
The idea is to calculate the correct variable P ∗

as a function of the original simulated variableP
using a transfer function calculated forcing the
equality between the CDF (cumulative distribu-
tion function F ) of the observed and simulated
variables [18]:

Frcm(Prcm) = Fobs(Pobs) (2)

Where Frcm and Fobs are, respectively, the CDF
of simulated and observed precipitation. So
the corrected value of precipitation is obtained
using the following equation:

P ∗(d) = F−1
obs(Frcm(P (d))) (3)

We applied the quantile mapping assuming that
both observed and simulated distributions are
well approximated by a Gamma distribution.
This distribution, dependent only on two pa-
rameters, is commonly used for representing
the PDF of precipitation [17] and several stud-
ies have proved that it is effective for modelling
rainfall data ([22], [11], [10]).

The analog method was first developed for
weather forecasting [13, 6, 16] and later ap-
plied to climate scales [32, 4, 33, 23], so it
is nowadays a popular and widely used tech-
nique in climate change studies. The analog
method is based on the hypothesis that ”ana-
logue” weather patterns (predictors, e.g. 500mb
geopotential) should cause ”analogue” local ef-
fects (predictands, e.g. precipitation at a given
location).

Figure 2 illustrates this relatively simple
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Analog MethodAnalog Method
B A

Predictor(s)

b b

Predictand

b a=b

Predictand

Historical database Future or testHistorical database Future or test 
period

Figure 2:
Schematic illustration of the analog method (adapted

from [8])

method. It basically consists in two steps. For
the day A to be downscaled, in a future or in a
test period:

1. The closest historical predictor B (the
analog) is found.

2. Then, the observed local precipitation b,
correspondent to the analog day B, is
used as the downscaled precipitation a.

Then these steps are repeated for each day to
downscale. Turco et al. (2011, [27]) positively
tested over Spain a new implementation of the
standard analogs method, in which the predic-
tor is the RCM precipitation. This approach it is
tested here for the first time over Italy.

CROSS-VALIDATION

It is important to verify the ability of any sta-
tistical model to perform out-of-sample predic-
tion, i.e. to reproduce the downscaling from
the knowledge of climatic data outside the pe-
riod used to test the model. Generally, the out-
of-sample prediction involves determining the
model parameters on one subset of the data

(training set), and validating the prediction on
the other (testing set). Here a leave-one-out-
cross-validation is applied [28], in which a mov-
ing window of 1 year is used as the validation
data, and the remaining observations as the
training data (Figure 3). For example, the first
test year is 1971, and the MOS analog method
is calibrated over the period 1972-2000; the
second test year is 1972 and is trained with
the complementary years, and so on. Conse-
quently, a total of 30 (equal to the total length
of the series) test periods were considered. Fi-
nally, we analyse the union of these 30 test
periods. The monthly means for the LS, and
the CDF of both observed and simulated pre-
cipitation for the QM, are calculated for every
month of the year following this cross-validation
approach.

1-st FOLD 

CROSS-VALIDATION 

2-nd FOLD 

3-rd FOLD 

n-th FOLD 

Test Train-set 

Train Train-set 

Test 

Train Train-set 

Test 

Train-set 

Test 

Figure 3:
A schematic view of the leave-one-out cross-validation

approach. Iteratively, all the single samples (in our case
years) from the original sample set are used as the test
data, and the remaining samples as the training data.
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We evaluate the ability of the COSMO-
CLM model and of the post-processing
methods to reproduce the seasonal cli-
matology (spatial pattern) for three pre-
cipitation indices proposed by ETCCDI
(http://cccma.seos.uvic.ca/ETCCDI) and
shown in Table 2.

Simple performance scores (i.e. bias or mean
error M , correlation C, standard deviation S,
and centred root mean square error R) were
computed for the spatial pattern of the seasonal
indices averaged over the control period (1971-
2000). The statistics were normalized divid-
ing both the centred root mean square error,
and the standard deviations of the simulated
fields, by the standard deviation of the obser-
vations. In this way it is possible to compare
the different indices. Besides, the comparison
between the simulated (both RCM and MOS
downscaled outputs) and observed climatolo-
gies (spatial patterns) are resumed by the Tay-
lor diagram [21]. The Taylor diagram consents
to summarize the three metrics of spatial simi-
larity, C, S andR, in a single bidimensional plot.
To include information about overall biases, the
colour of each point indicates the difference be-
tween the simulated and observed mean, nor-
malized by the observed mean. In the Taylor
diagrams reported in this study, the same struc-
ture is used in the different case studies (unless
otherwise specified). Specifically, the dots with
the numbers indicate the RCM results while the
squares with the letter ”M” followed by a num-
ber indicates the MOS results. Number 1, 2,
and 3 stand for PRCPTOT , R1 and RX1DAY

respectively. In the Taylor diagram, the more
the points are close to the observation point la-
belled ”OBS”, the better are the performances.

Label Description Units
PRCPTOT total precipitation mm
R1 number of days with

precipitation over 1
mm/day

days

RX1DAY maximum precipitation
in 1 day

mm

Table 2
Climatic mean and extreme ETCCDI indices for

precipitation used in this work (see also
http://cccma.seos.uvic.ca/ETCCDI).
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ORVIETO

OBSERVED DATA

The data cover the time window 1921-2010;
the dataset is based on daily values available
in the Hydrological Annals Part I; the rainfall
values time series result quite complete; ma-
jor gaps concern the period 1943-1946 (for
which are not available reliable observations
even for neighbours station) and the data re-
lated to years 1966,1979 and 1980 (in part); for
these ones, the data are replaced by measure-
ments supplied by Acquapendente station (425
m a.s.l.; about 20 km away from the slopes to
investigate). The choice is carried out verifying
the good agreement between the two observa-
tion points in terms of cumulated precipitation
values on seasonal and annual scale during the
periods when both worked (not shown).

MOS RESULTS

For this case study, the simple linear-scaling
and the quantile mapping methods are applied

not only to single grid-point, but to the ensem-
bles of grid-points that surround the station in
a square of 1◦ (see Fig. 1). This has been
done taking into account the reliable scale of
the model. Indeed it should be noted that the
direct model output is not a point value but an
average (over a grid) value, reliable considering
only from 4 to 10 times the nominal resolution
of the model.

In Figure 4 the three proposed methods are
compared in terms of probability distribution,
CDF (top) and PDF (bottom). The linear-
scaling and the MOS analogs results are not
satisfactory, while, as expected, a better agree-
ment between observed and corrected distri-
butions is reached using the quantile mapping
method.

As shown in Table 3, the QM approach also
allows to correctly reproduce the seasonal
means for the three indices PRCPTOT , R1
andRX1DAY (described in Table 2). The best
performances are reached for PRCPTOT and
R1 indices.
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DJF MAM JJA SON

PRCPTOT (mm)
OBS 184 190 114 268

RCM 144 (109,181) 176 (138,241) 95 (60,149) 192 (117,254)

QM 186 (151,219) 195 (143,244) 119 (72,165) 269 (199,337)

R1 (days)
OBS 21 22 12 21

RCM 20 (17,24) 27 (23,32) 13 (9,17) 19 (15,23)

QM 21 (18,24) 22 (19,26) 12 (9,15) 21 (18,24)

RX1DAY (mm/day)
OBS 32 29 29 50

RCM 24 (15,34) 23 (16,39) 24 (11,44) 42 (20,59)

QM 32 (21,45) 34 (21,54) 35 (15,59) 59 (31,86)

Table 3
Seasonal means for the three indices PRCPTOT , R1 and RX1DAY . The mean value for each index and for each season,

averaged over the period 1971-2000, is shown. The values are relative to observations (OBS), original simulation (RCM) and
corrected simulation using the quantile mapping approach (QM). For both original and corrected simulation the nearest grid point to
Orvieto station has been considered together with 5◦ and 90◦ percentile (in brackets) of the ensembles of grid-points that surround

the station in a square of 1◦ .
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Figure 4:
Probability distributions of the three proposed methods: Linear-Scaling (LS), Quantile mapping (QM) and MOS analogs (MOS). The

first figure is relative to the CDF and the second one to the PDF.
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PO RIVER BASIN

OBSERVED DATA

The observed data of daily precipitation are pro-
vided by ARPA Emilia Romagna over a gridded
dataset (based on the Inverse Distance Weight-
ing interpolation method) of 0.0715◦ (about 8
km) of spatial resolution. This horizontal reso-
lution is the same of the nominal resolution of
the COSMO-CLM model, and it facilitates the
comparison and the MOS application.

This dataset is based on daily observed pre-
cipitation available in the Hydrological Annals
- Part I, for the period 1971-2000. Hy-
drological Annals - Part 1 for the period
1971 to 1991 were published by the Na-
tional Hydrographic Service and are avail-
able at the website http://www.acq.

isprambiente.it/annalipdf/. Data for
the following years are available at the re-
gional ARPA website, e.g. for Emilia Ro-
magna at http://www.arpa.emr.it/sim/
?idrologia/annali_idrologici/. The
database is based on 1128 precipitation sta-
tions (Fig. 5 (a)). On average 459 stations
were active each year, with a maximum of 636
stations in 1975 and a minimum of 54 stations
in 1985. Figure 5 (b) shows the consistency of
this dataset.

MOS RESULTS

The ability of COSMO-CLM and MOS methods
to reproduce the seasonal climatologies (spa-
tial pattern) in terms of the precipitation indices
shown in Table 2 has been investigated.

As example, the results for the winter sea-
son (DJF) are summarised in Figure 6 through
comparison maps for the observed dataset
(left column), the COSMO-CLM model (center)
and the corresponding MOS analog (right col-
umn). Each rows is representative of one index,

PRCPTOT (top), R1 (middle), and RX1DAY

(bottom). The seasonal values of the indices
are averaged over the common period 1971-
2000. Below each subplot is indicated the
bias (or mean error M), relative standard devia-
tions (S), the correlation (C), and centred root-
mean-square (R) for the MOS analog and RCM.
These numbers indicate the similarity scores
and are plotted in the Taylor diagrams.

Figure 6 shows an overestimation of the
COSMO-CLM model in terms of total precipi-
tation and number of rainy days (respectively
23% and 16% of the observed values). The
overestimation is larger over the Alps, while
the maximum values over the Apennines are
underestimated. These biases lead to a low
spatial correlation between model and observa-
tions. Surprisingly, the results are better for the
extreme index RX1DAY. These results suggest
that, in addition to possible model limitations, its
overestimation could also be related to the well-
known problem in measuring the winter precip-
itation at high altitudes. This problem could
affect both the RCM validation and its down-
scaling and, unfortunately, there are not trivial
solutions. Figure 7 summarizes the verification
results for all the seasons and indices. The
MOS analog downscaled values show a higher
agreement with the observations and clearly
outperform the uncalibrated RCM outputs for
all the indices and seasons (Fig. 7).

The MOS analog also reduced the bias of the
RCM, except for the autumn season, when
the MOS analog shows an underestimation
(around 25%) of the observed values. Unfor-
tunately, floods are expected in autumn in Po
river basin, thus a correct simulation of the pre-
cipitation in this season is important to study
the flood hazard.

The MOS underestimation in autumn could be
due to the seasonal dependent bias of the pre-
dictor, that is, of the precipitation simulated by

http://www.acq.isprambiente.it/annalipdf/
http://www.acq.isprambiente.it/annalipdf/
http://www.arpa.emr.it/sim/?idrologia/annali_idrologici/
http://www.arpa.emr.it/sim/?idrologia/annali_idrologici/


12

C
en

tr
o

E
ur

o-
M

ed
ite

rr
an

eo
su

iC
am

bi
am

en
ti

C
lim

at
ic

i

CMCC Research Papers

the COSMO-CLM run. Indeed, in the other
seasons, COSMO-CLM tends to overestimate
the observed precipitation, while in autumn the
model presents an underestimation. Thus, the
autumn days to downscale have more chance
to find an analogue in which the bias have op-
posite sign, thus increasing the systematic er-
ror. Consequently, to test a potential solution
to this problem, we here evaluate a different
implementation of the MOS analog, in which
the closest historical predictor (the analog) is
sought within the same season of the day which
should be downscaled. Preliminary results of
this MOS seasonal analogs are resumed in the
Taylor diagram in the Figure 9. The MOS sea-
sonal analogs improves the COSMO-CLM model
and reduced the autumn bias of the original
MOS analogs (from -25% to -12%, Fig. 10), but
slightly deteriorates its performance in terms of
bias in summer (Fig. 9). These results are
probably due to the balance between a poten-
tial improving searching analogues with similar

bias and the potential worsening due to the re-
duced sample of analogues.

Figure 11 shows that the linear-scaling, that is
based on a mean correction factor at monthly
scale, not only improves the representation of
the PRCPTOT index, as expected, but also
the other two indices, although to a lesser ex-
tent (e.g. the bias for the RX1DAY in autumn
is +18%).

The aim of the quantile mapping is to improve
the representation not only of mean values but
the entire PDF of the precipitation. Figure 11
shows that this method clearly improves the di-
rect output of the COSMO-CLM model.

Finally, to facilitate the comparison among the
three MOS methods, Figure 13 shows the re-
sults for the three methods. The quantile map-
ping method have the best scores for most
indices and seasons, while the linear-scaling
shows the worst results in most cases.
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Figure 5:
Location (a) and consistency (b) of precipitation stations used in ARPA EMR dataset.
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Figure 6:
Spatial distribution of the observed (left), COSMO-CLM (central) and downscaled (right) mean values (averaged over the control

period 1971-2000) for the precipitation indices shown in Table 2. The spatial validation scores for the RCM and MOS analog
simulated values are given below the corresponding panels: bias (or mean error M ), relative standard deviations (S), correlation

(C) and centred root-mean-square (R).



14

C
en

tr
o

E
ur

o-
M

ed
ite

rr
an

eo
su

iC
am

bi
am

en
ti

C
lim

at
ic

i

CMCC Research Papers

  0

  0.5

  1

  1.5

  2

  2.5

  3

0

0.5

1

1.5

2

2.5

3

1

0.99

0.95

0.9

0.8

0.7

0.6

0.5

0.4

0.3
0.2

0.10

S
ta

n
d

a
rd

 d
e

v
ia

ti
o

n

Co
r r e

l a
t

i o
n

 C
o

e
f

f
i
c

i
e

n
t

R
M

S
D

DJF

OBS

R1

M1

R2

M2

R3

M3

 

 

B
ia

s
 (

%
)

−50

−40

−30

−20

−10

0

10

20

30

40

50

  0

  0.5

  1

  1.5

  2

  2.5

  3

0

0.5

1

1.5

2

2.5

3

1

0.99

0.95

0.9

0.8

0.7

0.6

0.5

0.4

0.3
0.2

0.10

S
ta

n
d

a
rd

 d
e

v
ia

ti
o

n

Co
r r e

l a
t

i o
n

 C
o

e
f

f
i
c

i
e

n
t

R
M

S
D

MAM

OBS

R1

M1

R2

M2

R3

M3

 

 

B
ia

s
 (

%
)

−50

−40

−30

−20

−10

0

10

20

30

40

50

  0

  0.5

  1

  1.5

  2

0

0.5

1

1.5

2

1

0.99

0.95

0.9

0.8

0.7

0.6

0.5

0.4

0.3
0.2

0.10

S
ta

n
d

a
rd

 d
e
v
ia

ti
o

n

Co
r r e

l a
t

i o
n

 C
o

e
f

f
i
c

i
e

n
t

R
M

S
D

JJA

OBS

R1

M1

R2

M2

R3

M3

 

 

B
ia

s
 (

%
)

−50

−40

−30

−20

−10

0

10

20

30

40

50

  0

  0.5

  1

  1.5

  2

  2.5

0

0.5

1

1.5

2

2.5

1

0.99

0.95

0.9

0.8

0.7

0.6

0.5

0.4

0.3
0.2

0.10

S
ta

n
d

a
rd

 d
e

v
ia

ti
o

n

Co
r r e

l a
t

i o
n

 C
o

e
f

f
i
c

i
e

n
t

R
M

S
D

SON

OBS

R1

M1

R2

M2

R3

M3

 

 

B
ia

s
 (

%
)

−50

−40

−30

−20

−10

0

10

20

30

40

50

Figure 7:
Taylor diagrams for the seasonal precipitation climatology. Better results are closer to observation (OBS). The circles are used for

the original COSMO-CLM model, while the squares for the MOS analogs method. The colours indicate the bias (in percentage
respect to the Observed mean). The numbers correspond to the different indices: 1=PRCPTOT; 2=R1; 3=RX1DAY.



15

C
en

tr
o

E
ur

o-
M

ed
ite

rr
an

eo
su

iC
am

bi
am

en
ti

C
lim

at
ic

i

0
200
400
600
mm

PR
CP

TO
T

R1

0
20
40
days

RX
1D

AY

0

50

100
mm/d

OBS RCM

M=−0.17 S=1.20 R=0.95 C=0.64

MOS

M=−0.25 S=0.77 R=0.33 C=0.97

M=−0.11 S=2.07 R=1.71 C=0.56 M=−0.12 S=0.92 R=0.39 C=0.92

M=−0.06 S=1.18 R=0.80 C=0.74 M=−0.18 S=0.90 R=0.36 C=0.93

Figure 8:
Same as Figure 6, but for autumn.
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Figure 9:
Same as Figure 7, but for the MOS seasonal analogs.
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Same as Figure 6, but for autumn, considering the MOS seasonal analogs.
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Figure 11:
Same as Figure 7, but for the linear-scaling method.
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Figure 12:
Same as Figure 7, but for the quantile mapping method.
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Figure 13:
Taylor diagrams for the seasonal precipitation climatology. Better results are closer to observation (OBS). The circles with LS are

used for the linear-scaling method, the squares with QM for the quantile mapping, while the triangles with MA for the MOS analogs
method. The colours indicate the bias (in percentage respect to the Observed mean). The numbers correspond to the different

indices: 1=PRCPTOT; 2=R1; 3=RX1DAY.
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SARDINIA

OBSERVED DATA

The observed data used for this domain are
time series of daily cumulated precipitation,
measured by an observational network located
in Sardinia region and managed by Ente Idro-
grafico della Sardegna. This dataset has been
provided by the CMCC IAFENT division (Sas-
sari). The considered observational stations
are listed in Table 4 and their geographical dis-
tribution is shown in Figure 14.
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Figure 14:
Map of the Sardinia and geographical distribution of

meteorological stations.

The available period is 1961-2000. In Figure
15 the number of available measurements is re-
ported, for each year and for each station. The
availability of pluviometric data in the consid-
ered period is quite good for almost all the sta-
tions, and only few stations have incomplete or
missing data for some years. Figure 15 shows
that the year 1981 is characterised by the high-
est number of station without data and that only

Station Longitude Latitude

1 ALA’ DEI SARDI 9,33 40,65
2 ARMUNGIA 9,38 39,52
3 BESSUDE 8,66 40,56
4 BUDONI 9,70 40,71
5 BURCEI 9,40 39,31
6 CARLOFORTE 8,31 39,14
7 CASTIADAS 9,50 39,24
8 ISILI 9,14 39,81
9 SINNAI 9,28 39,31
10 CUGLIERI 8,57 40,19
11 DESULO 9,23 40,01
12 ESCALAPLANO 9,35 39,62
13 URZULEI 9,51 40,16
14 IGLESIAS 8,54 39,31
15 DOMUS DE MARIA 8,85 39,04
16 JERZU 9,51 39,80
17 LANUSEI 9,54 39,88
18 MACOMER 8,77 40,27
19 MEANASARDO 9,07 39,95
20 MURAVERA 9,56 39,42
21 NUORO 9,32 40,32
22 NURRI 9,23 39,72
23 OLBIA 9,51 40,92
24 OROSEI 9,70 40,38
25 SASSARI 8,49 40,78
26 OZIERI 9,00 40,58
27 PULA 8,92 38,99
28 ILLORAI 9,03 40,33
29 SEDINI 8,76 40,88
30 S. GIUSTA 8,61 39,87
31 SANLURI 8,85 39,53
32 ZEDDIANI 8,62 39,98
33 LACONI 9,13 39,87
34 SASSARI 8,55 40,72
35 BUDDUSO’ 9,31 40,55
36 TEMPIO PAUSANIA 9,10 40,90
37 VILLACIDRO 8,74 39,46
38 VILLANOVA MONTELEONE 8,47 40,50
39 VILLANOVATULO 9,21 39,76

Table 4
Location of the meteorological stations.

three stations (Pula, S. Giusta and Sassari, Ta-
ble 4) have more than two years of missing data.

The data variability for each station is displayed
in the box plots of Figure 16.

The variability ranges of the different stations
are almost the same, with mean values be-
tween 4 and 7 mm/day. Only one station shows
precipitation significantly smaller than the oth-
ers (Carloforte station, number 6 of Table 4).
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These observed precipitation data could pro-
vide useful information on the climatology of
the island. The three indices PRCPTOT, R1,
and RX1DAY (described in Table 2), have been
calculated at annual and seasonal timescales.
The indices have been calculated only if no
more than 10% of the days in the considered
period is missing. Figure 17 shows the results
for each index (column) and timescales (row).
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Figure 15:
Number of days with valid data in each year and for each

pluviometric station.
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Figure 16:
Box plots of precipitation for each station.

The first column of pictures in Figure 17 is rel-
ative to the total precipitation, at annual and
seasonal scale. Concerning the annual case,
there is only one station with annual precipi-
tation lower than 500 mm per year (Carloforte
station in the south west part of island), while
most of the values are between 600 and 800
mm. Stations near the Gennargentu massif
have the highest values of annual precipitation,
greater than 1000 mm per year. The seasons
with more rain are winter and autumn. The sec-
ond column of Figure 17 is relative to the num-
ber of rainy days (index R1), and it shows that
in the east coast of the island there is a lower
number of rainy days with respect to other re-
gions, both at annual and seasonal scale. In
particular, the number of rainy days in summer
is very low, with less than 7 days in the inland
of the island, and with less than 5 days near
the coastline. Finally, in terms of maximum
daily precipitation (index RX1DAY, third column
of Figure 17) there is a quite high spatial vari-
ability, with higher values on the south-eastern
coast, especially in winter and in autumn.

MOS RESULTS

Figure 18 summarizes the verification results
of MOS analog for all the seasons and indices.
Also in this case, the MOS analog downscaling
method generally improves the RCM results for
all the indices and seasons. However, for JJA
and SON, the MOS analog does not eliminate
the (seasonal) bias of the RCMs.

As for the Po river basin, also in this case
we have evaluated the MOS analogs approach
applied at seasonal level, but without obtain-
ing encouraging results. Instead, better per-
formance have been obtained by reducing the
seasonal bias of the regional model through the
linear-scaling method (Figure 19), or through
the quantile mapping, which is effective even
for the extremes (Figure 20).
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Finally, the comparison among the three MOS
methods is reported in Figure 21. As for the
Po river basin, also in this case the quantile
mapping method usually have the best scores,
while the linear-scaling shows the worst results
in most cases.



24

C
en

tr
o

E
ur

o-
M

ed
ite

rr
an

eo
su

iC
am

bi
am

en
ti

C
lim

at
ic

i

CMCC Research Papers

PRCPTOT R1 RX1DAY

A
N
N
U
A
L

mm

500

600

700

800

900

1000

1100
days

60

62

64

66

68

70

72

74

76

78

mm/d

45

50

55

60

65

70

75

80

85

90

95
D
JF

mm

200

220

240

260

280

300

320

340

360

days

21

22

23

24

25

26

27

28

29

mm/d

30

35

40

45

50

55

M
A
M

mm

140

150

160

170

180

190

200

210

220

230

days

16

17

18

19

20

21

22

mm/d

25

30

35

40

45

JJ
A

mm

35

40

45

50

55

60

days

4

4.5

5

5.5

6

6.5

mm/d

14

16

18

20

22

24

SO
N

mm

200

210

220

230

240

250

260

270

280

290

300
days

17

18

19

20

21

22

mm/d

35

40

45

50

55

60

65

Figure 17:
Annual and seasonal climatologies for the three indices PRCPTOT, R1, RX1DAY (Table 2), calculated from time series of daily

cumulated precipitation.



25

C
en

tr
o

E
ur

o-
M

ed
ite

rr
an

eo
su

iC
am

bi
am

en
ti

C
lim

at
ic

i

  0

  0.5

  1

0

0.5

1

1

0.99

0.95

0.9

0.8

0.7

0.6

0.5

0.4

0.3
0.2

0.10

S
ta

n
d

a
rd

 d
e

v
ia

ti
o

n

Co
r r e

l a
t

i o
n

 C
o

e
f

f
i
c

i
e

n
t

R
M

S
D

DJF

OBS

R1

M1

R2

M2

R3

M3

 

 

B
ia

s
 (

%
)

−50

−40

−30

−20

−10

0

10

20

30

40

50

  0

  0.5

  1

  1.5

0

0.5

1

1.5

1

0.99

0.95

0.9

0.8

0.7

0.6

0.5

0.4

0.3
0.2

0.10

S
ta

n
d

a
rd

 d
e

v
ia

ti
o

n

Co
r r e

l a
t

i o
n

 C
o

e
f

f
i
c

i
e

n
t

R
M

S
D

MAM

OBS

R1

M1

R2

M2

R3

M3

 

 

B
ia

s
 (

%
)

−50

−40

−30

−20

−10

0

10

20

30

40

50

  0

  0.5

  1

  1.5

  2

0

0.5

1

1.5

2

1

0.99

0.95

0.9

0.8

0.7

0.6

0.5

0.4

0.3
0.2

0.10

S
ta

n
d

a
rd

 d
e
v
ia

ti
o

n

Co
r r e

l a
t

i o
n

 C
o

e
f

f
i
c

i
e

n
t

R
M

S
D

JJA

OBS

R1

M1

R2
M2

R3

M3

 

 

B
ia

s
 (

%
)

−50

−40

−30

−20

−10

0

10

20

30

40

50

  0

  0.5

  1

0

0.5

1

1

0.99

0.95

0.9

0.8

0.7

0.6

0.5

0.4

0.3
0.2

0.10

S
ta

n
d

a
rd

 d
e

v
ia

ti
o

n

Co
r r e

l a
t

i o
n

 C
o

e
f

f
i
c

i
e

n
t

R
M

S
D

SON

OBS

R1

M1

R2

M2

R3

M3

 

 

B
ia

s
 (

%
)

−50

−40

−30

−20

−10

0

10

20

30

40

50

Figure 18:
Taylor diagrams for the seasonal precipitation climatology. Better results are closer to observation (OBS). The circles are used for

the original COSMO-CLM model, while the squares for the MOS analogs method. The colours indicate the bias (in percentage
respect to the Observed mean). The numbers correspond to the different indices: 1=PRCPTOT; 2=R1; 3=RX1DAY.
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Figure 19:
Same as Figure 18, but for the linear-scaling method.
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Figure 20:
Same as Figure 18, but for the quantile mapping method.
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Figure 21:
Taylor diagrams for the seasonal precipitation climatology. Better results are closer to observation (OBS). The circles with LS are

used for the linear-scaling method, the squares with QM for the quantile mapping, while the triangles with MA for the MOS analogs
method. The colours indicate the bias (in percentage respect to the Observed mean). The numbers correspond to the different

indices: 1=PRCPTOT; 2=R1; 3=RX1DAY.
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CONCLUSION

The objective of this report was to test and to
compare the performances three MOS tech-
niques of increasing complexity - linear-scaling,
quantile mapping, and MOS analogs - to refine
the precipitation output of the COSMO-CLM re-
gional model over three Italian case study, Orvi-
eto, Po basin, and Sardinia. These domains
are covered by high resolution data, and by the
ERA40-driven COSMO-CLM model over the
control period 1971-2000. The performance
of the RCM and of the RCM-MOS simulations
are cross-validated in terms of spatial similar-
ity of the seasonal climatology (spatial pattern)
for three ETCCDI indices (characterizing total
precipitation, number of rainy days and maxi-
mum precipitation) between observed dataset
and downscaled fields at seasonal scale.

This comparison shows that the MOS down-
scaled values generally outperform the uncali-
brated RCM outputs, and the quantile mapping
have often the best scores for most precipita-
tion indices and seasons. These results high-
light the MOS applicability, especially useful for
those users that need high–resolution simula-
tions for climate change impact studies.

Specifically, the main results of this study are:

Over Orvieto, the best MOS results de-
rives from the application of the quantile
mapping approach: the preliminary result
of this method give some confidence in
its use to study the impacts of climate
change on landslide risk in this area.

Over the Po basin the MOS analog im-
proves the representation of the mean
regimes the frequency and the extremes

of precipitation, regardless of the season
(except an underestimation in autumn).
This is probably due to the seasonal bias
of the RCM. An alternative implementa-
tion of this approach, finding the analogs
in the same season of the predictor, led
to better results. Also the linear-scaling
improves the RCM outputs, except for the
index relate to the maximum precipitation,
while the QM usually gives better results.

Over Sardinia the MOS analog generally
improves the RCM results for all the in-
dices and seasons. However, for JJA
and SON, the MOS analog does not elim-
inate the bias of the RCMs. Comparing
the three MOS approaches, the QM of-
ten gives better results while the linear-
scaling is the worst performing in most
the cases.

To sum up, our strategy to bridge the gap
between dynamical models and the end user
shows promising results. However further re-
search is recommendable to apply these post-
processing methods to refine the RCM values,
taking into account the impact user needs and
the overall uncertainties that characterize the
climate model chains. Indeed, even if, in gen-
eral, the model chain ERA40-RCM-MOS repro-
duce quite well the spatial distribution of pre-
cipitation, its application in a climate change
context requires further research. For this rea-
son we plan to test these methods under ”sub-
optimal” conditions (using RCM driven by GCM
in current climate) and to future RCM scenar-
ios. In this case, it will be necessary to do
additional analysis of the robustness of these
MOS methods in climate change conditions.
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