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SUMMARY This work presents the conditioned upscaling procedure
applied in the Po-FEWS system by Hydrology area of ARPA SIMC Emilia
Romagna to select the rainfall daily scenarios which better fit seasonal
meteorological forecasts. Seasonal meteorological forecast provides
qualitatively useful information for management activities over a
short-medium term horizon, but their temporal aggregation time is too
coarse to be allow quantitatively considerations. For this reason, Hydrology
area of ARPA SIMC Emilia Romagna developed a conditioned upscaling
procedure to obtain daily scenarios coherent with the seasonal forecasts.
The daily scenarios are the inputs to the hydrological/hydraulics chains
available in the Po-FEWS system for short-medium term forecasts. The
daily rainfall scenarios are generated through a Spatio-Temporal Neymann
Scott Rectangular Pulse model calibrated using daily observations over the
period 1987-2008. Seasonal forecasts provide also the expected anomalies
of minimum and maximum temperatures. Minimum and maximum
temperatures are simulated at daily scale using a multilinear regression
model conditioned on rainfall scenarios.
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Introduction

The study of climate change impacts on hy-
drology and activities like water managements
requires the availability of data at a fine spatio-
temporal resolution, that usually is not avail-
able from GCMs simulations. The problem
of increasing the model resolution has been
addressed through downscaling techniques.
Downscaling methodologies can be divided into
two main categories, dynamic (Regional Cli-
mate Models, RCMs) and statistical. In the
dynamic downscaling, the GCM acts as bound-
ary and initial conditions for the RCM simulation
over the region of interest with a finer spatial
resolution than the original one. Within GEM-
INA project the RCM is COSMO-CLM that pro-
vides outputs in a spatial range among 1 and
50 kms, [16]. This resolution range is adequate
to capture the geographical variation of the at-
mospherical features, in particular temperature
and precipitation, the main parameters of in-
terest for hydrological impact studies. Statisti-
cal downscaling techniques are based on sta-
tistical models applied to historical data, [15].
Techniques like regression models, weather
pattern classification schemes, weather time
series generators are classified as statistical
downscaling method. Statistical downscaling
can reach a resolution finer that dynamical
downscaling, depending on the observations
availability, and it is generally less demanding
from a computational point of view. On the
other side, in absence of a large amounts of
observations statistical downscaling can not be
performed and the validity of the relationships
between predictands (the variables to be down-
scaled) and predictors (the GCMs variables) is
limited to the range of the data used for calibra-
tion, while future projections may not belong to
that range, [3, 16]. Within GEMINA project the
spatial downscaling of daily data will based ei-
ther on dynamical downscaling approach with

COSMO CLM as regional climate model and
statistical downscaling tecniques like MOS ana-
log, linear scaling and quantile mapping [13].

The climate modelling chain implemented in
GEMINA provides through COSMO-CLM daily
precipitation and temperature series that are
used to run long term hydrological simulations,
see the simulation scheme proposed in [14],
with the aim to characterise the capability of
the chain to reproduce hydrological extremes
and mean values and to study their change un-
der the scenarios RCP 4.5 and RCP 8.5 [5].
However, rainfall data at hourly time scale are
requested to address the impacts of climate on
floods, specially in small catchments charac-
terised by a concentration time of few hours,
[9]. The Hydrology area of ARPA SIMC has
already developed a procedure of (statistical)
temporal downscaling based on a weather gen-
erator approach. Currently the applied proce-
dure is used to downscale seasonal (3 months)
weather forecasts to a daily scale, to obtain a
3 months forecast of the hydrological variables
for water management policies. This paper de-
scribes how the temporal downscaling is ad-
dressed using a conditioned bottom-up proce-
dure based on a weather generator technique
to simulate series of rainfall and temperature
at Po river basin scale. The approach allows
to obtain series that are consistent with obser-
vations and among themselves avoiding situa-
tion like, e.g., two sites closely located that, at
a given instant, experience extremely different
precipitation values.

The rainfall daily scenarios are generated by
a Spatio-Temporal Neymann Scott Rectangu-
lar Pulse model, [1, 3], calibrated using daily
observations from the period 1987-2001, that is
the reference period for the meteorological cen-
ter of ARPA SIMC. The minimum and maximum
temperature daily fields are derived from rainfall
scenarios through linear multi-regression rela-
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tionships calibrated from the observed data. By
the available dataset over the whole basin, the
analysis performed suggests to simulate the
temperature field using a simple AR(1) model
or a slightly more complex model conditioned
on rainfall occurrence like the one used by [10],
see [6]. This kind of approach is of particu-
lar interest even for NEXTDATA project, one
of whose aims is the usage of the scenar-
ios for impact studies of the climate variability,
especially concerning the hydrogeological re-
sponse. In particular, the procedure used for
temporal statistical downscaling is applicable
within this project, since one of the focal point
is the comparison of the climate regionalization
methods on the Alpine area in terms of cumula-
tive rainfall values on sub-daily time scale and
spatial scale less than 10 km.

Weather Generator Literature review

A weather generator is a statistical tool able to
simulate, from observed statistics, atmospheric
variables like rainfall, temperature, relative hu-
midity, solar radiation, etc., in one or more sites.
The simulated variables reflects the statistical
behaviour of the observed ones. Weather gen-
erators are usually structured into 2 steps:

simulation of rainfall synthetic time series;

simulation of the other climate variables
eventually conditioned on rainfall occur-
rence (for the purpose of Hydrology area
of ARPA SIMC the variables of inter-
est are minimum and maximum tempera-
ture).

A "climate change" module can be added to in-
corporate/adapt the results of the weather gen-
erator to future climate scenarios.

The weather generators are calibrated at
monthly scale to better reproduce data season-
ality and the temporal correlation structure. The

weather generators are divided into two main
categories: Richardson-type, [10, 11] and se-
rial generators [8, 12].

In the next paragraphs we provide a short de-
scription of Richardson-type, serial, and a multi-
site weather generator based upon Spatio Tem-
poral Neymann Scott Rectangular Pulses.

RICHARDSON-TYPE weather generators
simulate rainfall occurrence like a first order,
two states Markov chain one for rainfall occur-
rence (wet), the other to indicate rainfall ab-
sence (dry), thus the Markov chain is charac-
terized by the four transition probabilities pDD,
pDW , pWD, and pWW . The rainfall model can
be made more complex and include additional
classes for precipitation (low/medium/high) or
have a longer memory, in these cases to char-
acterise the Markov chain a higher number of
parameters is requested. Once that the Markov
chain assigns the state “wet” the rainfall amount
is extracted from a distribution probability like
the Γ. The other climate variables are derived
through a multivariate (linear) regression that
depends on rainfall and temporal correlation
between rainfall and the variables to be sim-
ulated.

The minimum and maximum temperature (and
other derived variables) are obtained from a au-
toregressive model conditioned on precipitation
[12]. Given the precipitation occurrence at the
t-th day, the temperature (minimum/maximum)
is assumed to be normal with mean and vari-
ance conditioned on month and wet/dry status.
The randomly standardized variables

T ∗
k (t) =

Ti,k(t)− µi,k

σi,k
(1)

with i = W,D and k = min,max can be simu-
lated as
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T ∗
min(t) = a11T

∗
min(t− 1) + a12T

∗
max(t− 1) +

+b11ε(t) + b12δ(t)

T ∗
max(t) = a12T

∗
min(t− 1) + a22T

∗
max(t− 1) +

+b21ε(t) + b22δ(t) (2)

where ε and δ are random variables normally
distributed with mean equal zero and unitary
variance and {aij}, {bij} are function of the lag
0 and lag 1 correlation matrices M0 and M1:

A = M1M
−1
0 (3)

BBT = M0 −AMT
1 . (4)

Thus, once the normalized temperatures are
simulated from equation (2), the synthetic tem-
perature time series are obtained inverting the
equation (1) using the appropriate (conditioned
on precipitation status) mean and variance.

A disadvantage of Richardson-type weather
generators is that they are not able to repro-
duce the persistence of dry/wet periods.

SERIAL GENERATORS overby the prob-
lem of the wet/dry persistence simulating the
sequence of wet and dry periods. The length
of these periods is randomly chosen from
their probability distributions (conditioned on
the month the series stars). Only after the
simulation of the dry/wet sequence, the rainfall
amount is associated to the wet days according
to the distribution function of the precipitation
intensity. The procedure to simulate tempera-
ture and other derived variables is analogous to
the one presented for Richardson-type weather
generators.

Richardson-type and serial weather generators
have been developed for one-site application.
If, there is the need to simulate more than one

site it can happen that the results are statically
correct, if considered site by site, but non co-
herent in their spatial distribution [7].

Instead the spatial coherence is a prerequi-
site for hydrological application. To overcome
the lack of spatial coherence a spatio-temporal
rainfall generator has been identified as a more
adequate tool for hydrological tool. The model
is based on Spatio-Temporal Neymann Scott
Rectangular Pulse (STNSRP). The model has
been developed and tested at the University
of Newcastle upon Tyne [4, 1] and a software
named RAINSIM is available. The model is able
to produce rainfall series of any length and time
resolution down to minutes, [4, 1].

THE SPATIO-TEMPORAL NEYMANN
SCOTT RECTANGULAR PULSE for rain-
fall is a generalization of the Temporal Neymann
Scott Rectangular Pulse (TNSRP) model [2]. In
the TNSRP model the rainfall events are de-
scribed through a cluster of rain cells. The time
intervals between the storm origin and the birth
of the individual cells is modelled by a set of
independent and identically distributed random
variables. The model structure is based on the
following assumptions:

storm origins is a Poisson process with
parameter λ;

each storm is associated to a random
number of rain cells distributed as a Pois-
sonian of parameter ν;

the time interval between the storm origin
and the birth of a rain cell is exponentially
distributed with parameter β;

the duration and intensity of a rain cell are
exponentially distributed with parameters
η and ξ, respectively;
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Figure 1:
A schematic representation of the TNSRP model from [4].

the rainfall intensity is the sum of the con-
tributes of all the rain cells that are active
in a certain instant.

Figure 1 gives a graphical representation of the
TNSRP model and Table 1 summarizes the pa-
rameters.

The STNSRP model has two additional param-
eters: γ, related to the rain cell dimension and
carries the dimension of 1/km, and ρ, in 1/km2,
representing the spatial density of the centres
of the rain cells and a scaling factor matrix, φ,
adimensional. Thus the STNSRP model re-
quires to estimate 7 parameters (λ, β, η, ξ, ν,
γ, and ρ) for each month and the scaling factor
matrix φ characterised by one value for each
couple site-month.

[4] applied a four states (wet-dry, dry-wet, wet-
wet, dry-dry, meaning a wet day followed by a
dry day and so on) approach to characterised
the relationships between rainfall and the de-
rived variables, like temperature. Temperature
field are expressed in term of mean tempera-
ture (T ) and range (R). The mean temperature
is defined as the average value of maximum

and minimum temperature, the range is given
by the difference between maximum and mini-
mum temperature. The procedure to estimate
the parameters of the linear regression (and,
after, to apply it to simulate the variables) re-
quires to (a) divide each month into two halves,
(b) divide the variables into four groups : each
group is associated to one state (wet-wet, dry-
dry, wet-dry, and dry-wet), (c) normalise each
group with respect to its own mean and vari-
ance, (d) estimate the parameters of the re-
gression model associate to each state: for the
wet-wet case, the model is

T ∗(t) = a1T
∗(t− 1) + b1δ(t) + c1ε(t)

R∗(t) = a2R
∗(t− 1) + b2δ(t) + c2δ(t), (5)

for the dry-dry case:

T ∗(t) = a3T
∗(t− 1) + b3δ(t) + c3ε(t)

R∗(t) = a4R
∗(t− 1) + b4δ(t) + c4δ(t), (6)

for the dry-wet case:

T ∗(t) = a5T
∗(t− 1) + a6P

∗(t) +

+b5δ(t) + c5ε(t)

R∗(t) = a7R
∗(t− 1) + a8P

∗(t) +

+b6δ(t) + c6δ(t). (7)

for the wet-dry case:

T ∗(t) = a9T
∗(t− 1) + a10P

∗(t− 1) +

+b7δ(t) + c7ε(t)

R∗(t) = a11R
∗(t− 1) + a12P

∗(t− 1) +

+b8δ(t) + c8δ(t), (8)

where ε and δ are random variables normally
distributed with mean equal zero and unitary
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Table 1
List of parameters of the TNSRP model.

Parameter Description Unit
λ−1 average time between two storm origins h
β−1 average waiting time for one rain cell after a storm origin h
η−1 average cell duration h
ξ−1 average cell intensity mm/h
ν−1 average number of cells per storm adim

variance. Each regression parameter assumes
24 values (one for each possible half month).

In addition, [4] present a methodology based
on change factors to project observed statis-
tics and thus modify the STNSRP model pa-
rameters estimates according to climate sce-
narios. The change factors are estimated from
the statistics of control and future scenarios and
applied to the observed statistics, for rainfall the
change factors are multiplicative factors while
for the other variables are additive factors vari-
able along the year months.

The change factor (α) for rainfall is defined as

α =
PFut

PObs
=
PC,Fut

PC,Ref
(9)

where the suffix "Obs" stands for observed val-
ues, "Fut" for forecasted variables, "C,Ref" for
reference climate model and "C,Fut" for pro-
jected climate model, therefore PFut = α ×
P obs. The change factor for the probability of
having a dry day (Pdry) is derived as

β =
X(Pdry

Fut)

X(Pdry
Obs)

=
X(Pdry

C,Fut)

X(Pdry
C,Ref )

(10)

where X(Pdry) = Pdry/(1− Pdry) and

Pdry
Fut =

βX(Pdry
Obs)

(1 + βX(Pdry
Obs))

. (11)

For temperature, the change factor (δ) is given
by the difference between TC,Fut and TC,Ref ,
thus TFut = TObs + δ.

Figure 2:
The coverage of the grid of seasonal forecasts (·) of the

Po river basin (blue line).

ARPA Emilia Romagna seasonal
weather forecast

The meteorological center of ARPA SIMC pro-
vides to the Hydrology area, each month, a
seasonal (3 months) weather forecast of the cli-
mate anomaly (precipitation, temperature) over
Italy based on the forecasts of the European
Center for Medium-Range Weather Forecast
(ECMWF). The seasonal forecast are available
over a grid of about 30 x 30 km, Figure 2.

For hydrological purposes the 3-months aggre-
gation of the forecasts is too coarse and there
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is the need to downscale them to a finer tem-
poral resolution (days/hours). The Hydrology
area of ARPA SIMC approached the problem
through a conditioned bottom-up procedure,
[6]. The bottom-up procedure is articulated into
four main steps:

1. Multisite generation of synthetic rainfall
time series (spatio-temporal scenarios)
through the RAINSIM software [4];

2. Temporal aggregation of the spatio-
temporal scenarios at 3 months, i.e., the
forecast temporal resolution;

3. Comparison between seasonal forecast
and aggregated synthetic time series at
basin scale to select those that have a to-
tal precipitation over the whole basin sim-
ilar to the forecasted one (global criteria);

4. Among the scenarios that satisfy the
global criteria, comparison between sea-
sonal forecast and aggregated synthetic
time series for each cell grid falling into
the Po river basin; the simulations with a
precipitation amount similar to the fore-
casted one in at least the 80% of the cells
are considered as valid simulations (local
criteria).

The first two step are independent from the sea-
sonal forecasts while the satisfaction of global
and local criteria is function of the seasonal
forecasts. The main advantage of this proce-
dure is that the computational efforts to gener-
ate synthetic scenarios is limited to the initial
phase and is requests only once in a while. In
addition the parameters of the rainfall genera-
tor account for the spatial relationship between
rainfall among the different locations, this will
guarantee the spatial coherence of the syn-
thetic fields, [1].

Since steps 3 and 4 do not allow to se-
lect a prefixed number of scenarios, a rank-
ing procedure has been developed and imple-
mented. The ranking procedure computes, at
monthly/seasonal scale and at basin/cell level,
the absolute difference between the seasonal
forecast and the synthetic scenarios, identify-
ing those that are "more close" to the forecast.
In this way, it is possible to select a certain pre-
fixed number of scenarios knowing their dis-
tance/error from the forecast. If any of the sce-
narios is close enough to the seasonal forecast,
steps (1) and (2) can be repeated expanding
the scenarios database.

According to the available data, the tempera-
tures field are simulated using a simple AR(1)
model or a model conditioned on rainfall occur-
rence like the one used by [10] instead of the
model proposed by [4]. To ensure the coher-
ence with the anomalies identified in the sea-
sonal forecast, in the temperature field gener-
ation the monthly mean value is substituted by
the seasonally forecasted temperature.

Conclusion

The procedure individuated by the Hydrology
area of ARPA SIMC requires minimal com-
putational efforts and time to associate daily
scenarios to the seasonal forecasts. The
daily scenarios are used to feed the hydrolog-
ical/hydraulics chains in the Po-FEWS system
to obtain qualitative and quantitative forecast
useful for short-medium term water manage-
ment activities. The same approach applied to
generate hourly scenarios from daily field can
be useful for flood forecasting and management
activities where the daily scale is too coarse.
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