
Research Papers
Issue RP0167
February 2013

Scientific Computing and
Operations Division
(SCO)

TECHNICAL DOCUMENTATION
L-BFGS for GPU-CUDA
Reference Manual and User’s Guide

By Luisa D’Amore
Universitá degli Studi di Napoli

Federico II
luisa.damore@unina.it

Rossella Arcucci
Centro Euro-Mediterraneo sui

Cambiamenti Climatici (CMCC)
rossella.arcucci@cmcc.it

Valeria Mele
Universitá degli Studi di Napoli

Federico II
valeria.mele@unina.it

Giuseppe Scotti
Universitá degli Studi di Napoli

Federico II
giuseppe.scotti@unina.it

and Almerico Murli
Centro Euro-Mediterraneo sui

Cambiamenti Climatici (CMCC)
almerico.murli@cmcc.it

SUMMARY In this document is described a L-BFGS subroutine for
large-scale constrained optimization algorithm implemented in GPU-CUDA.
Here is provided a brief description of the L-BFGS algorithm developed and
a brief tour around the main steps of the subroutine is provided. Significant
efforts have been made to make the subroutine documenting, so this note
should be seen as a prelude to looking at the code itself.

02

C
en

tr
o

E
ur

o-
M

ed
ite

rr
an

eo
su

iC
am

bi
am

en
ti

C
lim

at
ic

i

CMCC Research Papers

Contents

Purpose . 4

Specification . 4

Description . 5

Arguments . 5

Example of Calling Program . 7

main program . 7

problem-dependent code . 8

Compiling and Running . 9

Program results . 10

Other testing functions . 11

Optional Parameters Configuration . 12

Utility Functions . 13

Error Indicators and Warnings . 14

Algorithmic Details . 14

Stopping Criteria . 15

Testing . 16

Bibliography . 19

3

04

C
en

tr
o

E
ur

o-
M

ed
ite

rr
an

eo
su

iC
am

bi
am

en
ti

C
lim

at
ic

i

CMCC Research Papers

PURPOSE

cuda opt unlp solve is designed to minimize an arbitrary smooth function not subject to
constraints (which not include bounds on the variables) in GPU-CUDA environment [7]. The
gradient of the function should be supplied by you. The Hessian matrix of second derivatives
doesn’t need to be evaluated directly. Each method and each necessary task into the optimization
(for example the definition of the objective function and starting point) is coded into modules that
can be replaced according to the application.

A list of capabilities is described below:

Modularity: as mentioned before, each task into an optimization is separated one from
another. It means that the code for the algorithm and the code of the objective function are
different entities. For example, if the function has a new starting point, there is no need to
modify the main code, but only a module related with it. If we need to change the objective
function, there is no need to transform all the code, but only the module related with the
function. If we want to change the line search routine with a custom version, a change in
the module relating to the algorithm will suffice. This will allow the user to make minimum
changes in all the codes in order to avoid programmer bugs.

Simplicity: the modules are programmed in C for CUDA. Only C standards have been used,
and the code will work with almost any C compiler. The code has been prepared for both an
expert programmer as well as for a medium programmer.

Precision: the modules can handle double precision (64-bit) just like the original sequential
routine. This allows you to reach the the same accuracy of results.

Parallelism: Any vector calculation procedure implemented in the sequential version of the
software has been parallelized with one or more CUDA kernels in the GPU version. Linear
algebra operations are performed using CUBLAS (CUDA Basic Linear Algebra Subprograms).

SPECIFICATION

#include "cu lbfgs dp.h"

#include "utils.h"

int cuda opt unlp solve(int n, int m, void (*eval fg)

(double *dev x, double *dev objf, double *dev grad, int n),

double *dev x, double *dev objf, double *dev grad,

double *dev hess, double *dev workvec, double eps,

int *dev istate)

Note: dev prefix indicates that the vectors shall be stored in the GPU memory.

TECHNICAL DOCUMENTATIONL-BFGS for GPU-CUDAReference Manual and User’s Guide

05

C
en

tr
o

E
ur

o-
M

ed
ite

rr
an

eo
su

iC
am

bi
am

en
ti

C
lim

at
ic

i

DESCRIPTION

cuda opt unlp solve is designed to solve the unconstrained minimization problem

min f(x), x = (x1, x2, ..., xn), (1)

using the limited memory BFGS method [6].
The routine [2] is the CUDA version of Harwell Fortran routine VA15 [3] and it is especially effective on
problems involving a large number of variables. In a typical iteration of this method an approximation Hk to the
inverse of the Hessian is obtained by applying m BFGS updates to a diagonal matrix H0

k , using information
from the previous m steps.

The user specifies the number m, which determines the amount of storage required by the routine. The user
may also provide the diagonal matrices H0

k if not satisfied with the default choice. The algorithm is described
in [6] by Liu and Nocedal.
The user is required to calculate the function value f and its gradient g. In order to allow the user complete
control over these computations, reverse communication is used. The routine must be called repeatedly under
the control of the parameter dev istate.
The steplength is determined at each iteration by means of the line search routine MSRCH, which is a slight
modification of the routine CSRCH written by More’ and Thuente [5].

A typical invocation would be:

cuda opt unlp solve(n, m, evaluate fg, d x, d f, d g, d diag, d w,

eps, d istate);

You must supply an initial estimate of the solution to (1), together with functions.

ARGUMENTS

1. n - int (Input)
On entry: n, the number of variables.
Constraint: n > 0

2. m - int (Input)
On entry: m, the number of corrections used in the BFGS update.
It is not altered by the routine. Values of m less than 3 are not recommended; large values of m will
result in excessive computing time. 3 ≤ m ≤ 7 is recommended.
Constraint: m > 0

3. eval fg - function, supplied by the user (External Function)
eval fg must be a CUDA function that calculates the value of the nonlinear function f and the gradient
g(x) = (∂F

∂x
) for a specified n element vector x.

Its specification is: void (eval fg) (double *dev x, double *dev objf, double*dev grad, int

n), where:

(a) dev x - double * (Input)
On entry: x, the vector of variables at which the objective function and/or all available elements of
its gradient are to be evaluated.

(b) dev objf - double * (Output)
On exit: dev objf must be set to the value of the objective function at xk.

06

C
en

tr
o

E
ur

o-
M

ed
ite

rr
an

eo
su

iC
am

bi
am

en
ti

C
lim

at
ic

i

CMCC Research Papers

(c) dev grad - double * (Output)
On exit: dev grad must return the available elements of the gradient evaluated at xk, i.e.,
dev grad[i-1] contains the partial derivative ∂F

∂xi
.

(d) n - int (Input)
On entry: n, the number of variables.

4. dev x - double * (Input/Output)
On entry: x, an estimate of the solution at iterate k. On exit.
On exit: x, with dev istate = 0, contains the values of the variables at the best point found (usually
a solution).

5. dev objf - double * (Input)
On entry: Before initial entry and on a re-entry with dev istate = 1, it must be set by the user to
contain the value of the objective function F at the point x.

6. dev grad - double * (Input)
On entry: Before initial entry and on a re-entry with dev istate = 1, it must be set by the user to
contain the components of the gradient g evaluated at the point x.

7. dev hess - double * (Input)
On entry: If global variable diagco=TRUE, then on initial entry or on re-entry with dev istate = 2,
the array of length n, dev hess, must be set by the user to contain the values of the diagonal matrix H0

k .
It needs not be initialized if the default option is used and will be set to the identity.
void enable first Hessian(); Constraint: all elements of dev hess must be positive.

8. dev workvec - double * (Input)
On entry: dev workvec is an array of length n(2m + 1) + 2m used as workspace for
cuda opt unlp solve. This array must not be altered by the user. The work vector dev workvec is
divided as follows:

(a) the first n locations are used to store the gradient and other temporary information.

(b) locations (n+ 1)...(n+m) store the scalars ρ.

(c) locations (n+m+ 1)...(n+ 2m) store the numbers α used in the formula that computes Hg.

(d) locations (n+ 2m+ 1)...(n+ 2m+ 2mn) store the last m search steps.

(e) locations (n+ 2m+ nm+ 1)...(n+ 2m+ 2nm) store the last m gradient differences.

The search steps and gradient differences are stored in a circular order.

9. eps - double (Input)
On entry: eps is a positive variable that must be set by the user, and determines the accuracy with
which the solution is to be found. The subroutine terminates when ||g|| < eps·max(1, ||x||), where ||.||
denotes the Euclidean norm. By default eps = 10−5. The subroutine ends even when the number of
iterations is greater than 2000.

10. dev istate - int * (Input)
On entry: dev istate is an integer variable that must be set to 0 on initial entry to the subroutine. A
return with dev istate < 0 indicates an error, and dev istate = 0 indicates that the routine has
terminated without detecting errors.
On a return with dev istate = 1, the user must evaluate the function F and gradient g. On a return
with dev istate = 2, the user must provide the diagonal matrix H0

k .
The following negative values of dev istate, detecting an error, are possible:

(a) dev istate = -1 The line search routine MCSRCH failed. The parameter info provides more
detailed information (see also the documentation of MCSRCH):

TECHNICAL DOCUMENTATIONL-BFGS for GPU-CUDAReference Manual and User’s Guide

07

C
en

tr
o

E
ur

o-
M

ed
ite

rr
an

eo
su

iC
am

bi
am

en
ti

C
lim

at
ic

i

i. info = 0 improper input parameters.

ii. info = 2 relative width of the interval of uncertainty is at most XTOL.

iii. info = 3 more than 20 function evaluations were required at the present iteration.

iv. info = 4 the step is too small.

v. info = 5 the step is too large.

vi. info = 6 rounding errors prevent further progress. there may not be a step which satisfies
the sufficient decrease and curvature conditions. tolerances may be too small.

(b) dev istate = -2 The i − th diagonal element of the diagonal inverse Hessian approximation,
given in dev hess, is not positive.

(c) dev istate = -3 Improper input parameters for cuda opt unlp solve (n or m are not positive).

EXAMPLE OF CALLING PROGRAM

Here is a simple example of a main program, that is a driver to minimize the Extended Rosenbrock function
using our function cuda opt unlp solve.
It shows how the function is called from the main program and which parts of the code you need to edit for a
specific problem. Template files included with the software allows you to easily use the routine changing and
adding a few lines of code.
In this case, the minimized function is the sum of several terms, each one of the same mathematical form:

f(x) =

n/2∑
i=1

c(x2i − x22i−1)
2 + (1− x2i−1)

2, x0 = [−1.2, 1, ...,−1.2, 1]. c = 100. (2)

This function is also known as Extended Rosenbrock.
In these examples some code has been omitted for clarity.

MAIN PROGRAM

inc lude < s t d l i b . h>
inc lude < s t d i o . h>
inc lude <math . h>
inc lude <cublas . h>
inc lude " d r i v e r . h "
inc lude " f u nc t i o ns . h "
inc lude " cu_lbfgs_dp . h "

i n t deviceID ;

/ * OPTIONAL: suppor t ing f o r f u n c t i o n and grad ien t eva lua t ions * /
i n t red_blocks , red_threads ;
double * d_odata , * d_temp ;

i n t main (i n t argc , char * argv []) {
/ * CUDA vectors * /
double * dev_x , * dev_g , * dev_diag , *dev_w ;
i n t * d _ i f l a g ;
s t a t i c double * d_f ;

s t a t i c i n t m, n ;
i n t dim_w ;
i n t numThreadsPerBlock , numBlocks ;

cudaDeviceProp deviceProps ;
i n t deviceCount = 0 ;
double eps = 1e - 5 ;
/ * Check f o r the c o r r e c t execut ion * /

n = a t o i (argv [1]) ;
m = a t o i (argv [2]) ;

08

C
en

tr
o

E
ur

o-
M

ed
ite

rr
an

eo
su

iC
am

bi
am

en
ti

C
lim

at
ic

i

CMCC Research Papers

dim_w = n + 2 * m + 2 * m * n ;

/ * Execut ion c o n f i g u r a t i o n * /
numThreadsPerBlock = 512;
numBlocks = n / numThreadsPerBlock + (n % numThreadsPerBlock == 0 ? 0 : 1) ;

/ * Check f o r CUDA devices * /
cudaGetDeviceCount (& deviceCount) ;
i f (deviceCount == 0) { e x i t (0) ; }
/ * Se lec ts the f a s t e s t GPU * /
deviceID = get_best_dev ice_ id () ;
cudaSetDevice (1) ;

/ * Cuda s t a r t * /
cudaError_ t cudaStat ;
c u b l a s I n i t () ;
cudaStat = cudaMalloc ((vo id * *) &d_f , s i z e o f (double)) ;
cudaStat = cudaMalloc ((vo id * *) &d_ i f l ag , s i z e o f (i n t)) ;
cudaStat = cudaMalloc ((vo id * *) &dev_x , n * s i z e o f (double)) ;
cudaStat = cudaMalloc ((vo id * *) &dev_diag , n * s i z e o f (double)) ;
cudaStat = cudaMalloc ((vo id * *) &dev_g , n * s i z e o f (double)) ;
cudaStat = cudaMalloc ((vo id * *) &dev_w , dim_w * s i z e o f (double)) ;
i f (cudaStat != cudaSuccess) {

p r i n t f (" E r ro r : The device memory a l l o c a t i o n f a i l e d . \ n ") ;
r e t u r n -1 ;

}
/ * Funct ion - dependent code * /

/ * DEFINITION OF STARTING POINT (FUNCTION-DEPENDENT) * /
x_rosen_kernel <<<numBlocks , numThreadsPerBlock >>>(dev_x , n) ;
/ * Memory usage * /
gpu_mem_info () ;

/ * For the reduc t ion * /
getNumBlocksAndThreads (n / 2 , &red_blocks , &red_threads) ;
cudaStat = cudaMalloc ((vo id * *) &d_odata , red_blocks * s i z e o f (double)) ;
cudaStat = cudaMalloc ((vo id * *) &d_temp , (n / 2) * s i z e o f (double)) ;
i f (cudaStat != cudaSuccess) {

r e t u r n -1 ;
}

/ * - - - - - - - - CALL THE SOLVER - - - - - - - - * /
cuda_opt_unlp_solve (n , m, evaluate_fg , dev_x , d_f , dev_g , dev_diag , dev_w , eps , d _ i f l a g) ;

/ * d e a l l o c a t i o n o f device memory * /
cudaFree (dev_x) ;
cudaFree (dev_g) ;
cudaFree (dev_diag) ;
cudaFree (dev_w) ;
cudaFree (d_f) ;
cudaFree (d _ i f l a g) ;
cudaFree (d_odata) ;
cudaFree (d_temp) ;
r e t u r n 0 ;

}

PROBLEM-DEPENDENT CODE

In the code below are shown the segments which the user must define depending on the particular function to
be minimized (files: driver.cu and functions.cu).
For the evaluation of the function and the gradient, you have to define the pointer of cuda opt unlp solve

to member function for the evaluation of both f and g, this allows to have more flexibility in writing code
optimized for the GPU.

/ * Custom r o u t i n e f o r eva luate f u n c t i o n and grad ien t * /
vo id eva lua te_ fg (double * dev_x , double * dev_f , double * dev_g , i n t n) {

/ * execut ion c o n f i g u r a t i o n f o r the reduc t ion kerne l * /
i n t numThreadsPerBlock = 512;

TECHNICAL DOCUMENTATIONL-BFGS for GPU-CUDAReference Manual and User’s Guide

09

C
en

tr
o

E
ur

o-
M

ed
ite

rr
an

eo
su

iC
am

bi
am

en
ti

C
lim

at
ic

i

i n t numBlocks ;
/ * Evaluate the f u n c t i o n and i t s g rad ien t i n x * /

numBlocks = (n / 2) / numThreadsPerBlock + ((n / 2) % numThreadsPerBlock == 0 ? 0 : 1) ;
fg_rosen_kernel <<<numBlocks , numThreadsPerBlock >>>(d_temp , dev_g , dev_x , n / 2) ;
/ * d_odata d i u t i l i t à per l a va lu taz ione d i rosenbrock è g loba le per non dover la r i a l l o c a r e

ogni v o l t a * /
my_reduce (n /2 , red_threads , red_blocks , d_temp , d_odata , dev_f) ;
cudaThreadSynchronize () ;

}

/ * * @brief KERNEL 1 . 1 : DEFINING THE STARTING POINT (ROSENBROCK) \ n To change according to the f u n c t i o n a l
to be minimized * /

__global__ vo id x_rosen_kernel (double * dev_x , i n t s i ze) {

const i n t t i d = blockDim . x * b lock Idx . x + th read Idx . x ;
i f (t i d < s ize) {

i f (t i d % 2 == 0) { dev_x [t i d] = - 1 . 2 ; }
e lse { dev_x [t i d] = 1 . 0 ; }

}
}

/ * * @brief KERNEL 2 . 1 : FOR THE CALCULATION OF THE FUNCTION AND GRADIENT (ROSENBROCK) * /
__global__ vo id fg_rosen_kerne l (double *d_tmp , double * dev_g , double * dev_x , i n t s i ze) {

double c = 100.0 ;
const i n t t i d = blockDim . x * b lock Idx . x + th read Idx . x + 1 ;
const i n t k = t i d * 2 ;
i f (t i d <= s ize) {

d_tmp [t i d - 1] = c * pow ((dev_x [2 * t i d - 1] - pow(dev_x [2 * t i d - 2] , 2)) , 2) + pow
((1 . 0 - dev_x [2 * t i d - 2]) , 2) ;

dev_g [k - 2] = -4.0 * c * dev_x [2 * t i d - 2] * (dev_x [2 * t i d - 1] - pow(dev_x [2 * t i d
- 2] , 2)) - 2.0 * (1 .0 - dev_x [2 * t i d - 2]) ;

dev_g [k - 1] = 2.0 * c * (dev_x [2 * t i d - 1] - pow(dev_x [2 * t i d - 2] , 2)) ;
}

}

COMPILING AND RUNNING

This section explains how to compile and run a CUDA based L-BFGS application from the command line. Here
are the steps you need to follow:

1. Download and install the latest Graphic Card driver and CUDA Toolkit, if you haven’t already done so;

You can download the latest release of your GPU-CUDA driver for free from:
http://www.nvidia.com/Download/index.aspx?lang=en-us.
Recently, developers can download the latest CUDA Toolkit, SDK, and drivers at
https://developer.nvidia.com/cuda-toolkit.

2. Create a program that uses parallel cuda opt unlp solve routine;

Create a program that calls cuda opt unlp solve components or make small changes to the
provided driver, written to minimize the Extended Rosenbrock function.

3. Compile the program;

To simplify compilation on different systems the driver program comes with a Makefile. This is pre-
configured for compilation of the routine for Linux systems with the NVIDIA TESLA C1060 graphic
card. The main modification of the Makefile depends on the class of NVIDIA GPU architectures
for which the CUDA input files must be compiled.
For example, if you want to compile the driver for a Linux system with GPU Nvidia GeForce GTX 560
Ti, with 2.0 virtual architecture, you have to update the variable GPUARCH in the Makefile with the

10

C
en

tr
o

E
ur

o-
M

ed
ite

rr
an

eo
su

iC
am

bi
am

en
ti

C
lim

at
ic

i

CMCC Research Papers

Virtual Architecture Feature List (from the User Guide)
compute 10 Basic features
compute 11 + atomic memory operations on global memory
compute 12 + atomic memory operations on shared memory

+ vote instructions
compute 13 + double precision floating point support
compute 20 + Fermi support
compute 30 + Kepler support

value compute 20.

Note: visit the NVIDIA main site to control which virtual GPU architecture to compile for (i.e., which
version of PTX to emit).

The NVIDIA graphics driver and CUDA compiler are already installed on machines that support
CUDA. However, one must set some environment variables in order to run and write CUDA
enabled programs.
If you are unable to compile, make sure you are using the compiler in a recent release of the
CUDA Toolkit. You can verify the version of your CUDA compilation tools using these commands:

nvcc -version

Once you’ve updated your CUDA Toolkit, you should be able to use the programs without changes.

4. Run the program.

After you compile the driver successfully, you can run it:

./driver program 1000000 7

The parameters that the driver require to be run are two: the number of variables of the function n

and the number of secant updates of the Hessian matrix m. The first two parameters are required.
Whithout any change, it will minimize the Extended Rosenbrock function. User can change the
problem dependent code (see section) to minimize a different one.

PROGRAM RESULTS

The following is the text output generated by running the provided driver:

Function to minimize: Rosenbrock

Xtol: 2.220446e-16

Number of variables n = 1000000;

Number of corrections m = 7;

f = 1.210000e+07;

gnorm = 1.646623e+05

*******̄****************************

I NFN FUNC GNORM STEPLENGTH

1 4 8.968026e+06 1.338990e+05 1.275337e-04

2 5 2.223223e+06 1.835022e+04 1.000000e+00

3 6 2.071674e+06 2.874521e+03 1.000000e+00

4 7 2.066929e+06 1.253213e+03 1.000000e+00

TECHNICAL DOCUMENTATIONL-BFGS for GPU-CUDAReference Manual and User’s Guide

11

C
en

tr
o

E
ur

o-
M

ed
ite

rr
an

eo
su

iC
am

bi
am

en
ti

C
lim

at
ic

i

5 8 2.064897e+06 1.409016e+03 1.000000e+00

6 9 2.050814e+06 3.691128e+03 1.000000e+00

...

32 46 3.391364e+02 1.188979e+02 1.000000e+00

33 47 4.085484e+01 2.639775e+02 1.000000e+00

34 48 2.229921e+00 1.018714e+01 1.000000e+00

35 49 1.162750e-02 1.781043e+00 1.000000e+00

36 50 4.912961e-06 7.652340e-02 1.000000e+00

37 51 6.752264e-10 1.013915e-03 1.000000e+00

The m̄inimization terminated without detecting errors.

Number of function and gradient evaluations for L-BFGS: 51

Total time for the function and gradient evaluations: 66.000000 ms

Average time for the function and gradient evaluations: 1.294118 ms

Number of l-bfgs calls: 51

Total time for the execution of l-bfgs: 398.000000 ms

Average time for the executions of l-bfgs: 7.803922 ms

Total time for the execution of mcstep: 0.000000 ms

Total time for the execution of CUBLAS routines: 324.000000 ms

Number of calls to mcsrch: 87

Average time for the execution of mcsrch: 0.643678 ms

Total time for the execution of mcsrch: 56.000000 ms

Total time for the minimization: 464.000000 ms

OTHER TESTING FUNCTIONS

As previously seen, cuda opt unlp solve comes with a driver program which shows the behavior of l-bfgs
and the performance achieved with the extended Rosenbrock function (L-BFGS\CUDA\Driver\driver.cu).
There are also other functions from CUTE collection [1] to test the behavior of the routine
(L-BFGS\CUDA\Driver\functions.cu). For each of them the start point and the optimal solution
are known.
We provide some function (objective function and problem characteristics definition) that user can change in
the driver without effort.
The first function is the Extended Rosenbrock previously seen:

f(x) =

n/2∑
i=1

c(x2i − x22i−1)
2 + (1− x2i−1)

2, x0 = [−1.2, 1, ...,−1.2, 1]. c = 100. (3)

The second is the Extended Beale function:

f(x) =

n/2∑
i=1

(1.5− x2i−1(1− x2i))2 + (2.25− x2i−1(1− x22i))2

+(2.625− x2i−1(1− x32i))2, x0 = [1, 0.8, ..., 1, 0.8].

(4)

The third is the Extended Powell function:

f(x) =

n/4∑
i=1

(x4i−3 + 10x4i−2)
2 + 5(x4i−1 − x4i)2 + (x4i−2 − 2x4i−1)

4

+10(x4i−3 − x4i)4, x0 = [3,−1, 0, 1, ..., 3,−1, 0, 1].

(5)

12

C
en

tr
o

E
ur

o-
M

ed
ite

rr
an

eo
su

iC
am

bi
am

en
ti

C
lim

at
ic

i

CMCC Research Papers

The fourth is the Extended Wood function:

f(x) =

n/4∑
i=1

100(x24i−3 − x4i−2)
2 + (x4i−3 − 1)2 + 90(x24i−1 − x4i)2

+10.1{(x4i−2 − 1)2 + (x4i + 1)2}+ 19.8(x4i−2 − 1)(x4i − 1),

x0 = [−3,−1, ...,−3,−1].

(6)

The fifth is an Extended Trigonometric function:

f(x) =

n∑
i=1

((n−
n∑

j=1

cosxj) + i(1− cosxi)− sinxi)2,

x0 = [0.2, 0.2, ..., 0.2].

(7)

OPTIONAL PARAMETERS CONFIGURATION

Several optional parameters in cuda opt unlp solve define choices in the problem specification or the
algorithm logic. In order to reduce the number of formal arguments of the routine these optional arguments
have associated default values that are appropriate for most problems. Therefore, you need only specify those
optional arguments whose values are to be different from their default values. The remainder of this section
can be skipped if you wish to use the default values for all optional arguments.
Optional parameters may be specified by calling the relative function, indicated in the description of each one.
A complete list of optional parameters and their default values is given:

1. diagco - int (Default = 0)
diagco is a logical variable that must be set to 1 if the user wishes to provide the diagonal matrix H0

k at
each iteration. Otherwise it should be set to 0, in which case cuda opt unlp solve will use a default
value. If diagco is set to 1 the routine will return at each iteration of the algorithm with dev istate =

2, and the diagonal matrix H0
k must be provided in the array dev hess.

To change the default value, you must call enable first Hessian() before cuda opt unlp solve

calls.

2. eps - int * (Default = 1e-05)
eps is the error tolerance. It determines the accuracy with which the solution is to be found.
To change the default value, you must call change eps(double new eps) before
cuda opt unlp solve calls.

3. iprint - int * (Default = (1,0))
is an integer array of length two which must be set by the user.
iprint[1] specifies the frequency of the output:

(a) iprint[1] < 0 : no output is generated;

(b) iprint[1] = 0 : output only at first and last iteration;

(c) iprint[1] > 0 : output every iprint[1] iterations.

iprint[2] specifies the type of output generated:

(a) iprint[2] = 0 : iteration count, number of function evaluations, function value, norm of the
gradient, and steplength;

(b) iprint[2] = 1 : same as iprint[2] = 0, plus vector of variables and gradient vector at the
initial point;

(c) iprint[2] = 2 : same as iprint[2] = 1, plus vector of variables;

TECHNICAL DOCUMENTATIONL-BFGS for GPU-CUDAReference Manual and User’s Guide

13

C
en

tr
o

E
ur

o-
M

ed
ite

rr
an

eo
su

iC
am

bi
am

en
ti

C
lim

at
ic

i

(d) iprint[2] = 3 : same as iprint[2] = 2, plus gradient vector.

To change the default value of iprint, call set iprint(int i one, int i two) before
cuda opt unlp solve calls.

4. GTOL - double (Default = 0.9)
GTOL is a variable which controls the accuracy of the line search routine MCSRCH. If the function and
gradient evaluations are inexpensive with respect to the cost of the iteration (which is sometimes the
case when solving very large problems) it may be advantageous to set GTOL to a small value.
A typical small value is 0.1.
Constraint: GTOL > 1e-04.

5. STPMIN and STPMAX - double (Default = 10−20 and 1020)
are non-negative variables which specify lower and upper bounds for the step in the line search. Their
default values are 1e-20 and 1e+20, respectively. These values need not be modified unless the
exponents are too large for the machine being used, or unless the problem is extremely badly scaled (in
which case the exponents should be increased).

6. XTOL - double (Default = machine dependent)
XTOL must be set by the user to an estimate of the machine precision. The line search routine will
terminate if the relative width of the interval of uncertainty is less than XTOL.

7. maxfev - int (Default = 20)
maxfev indicates the maximum number of evaluations of the function and the gradient per iteration.

8. icall - int (Default = 2000)
icall indicates the maximum number of iterations.

UTILITY FUNCTIONS

There are some behaviors of the software that the user must take into account:

At the end of execution, the result of the minimization is only present in the global memory of the device
for future processing.
To copy the vector of the solution from the host to the device, you can use the following function:
void get solution(double *h x, double *dev x, int n);

where h x is the output vector of size n present on the host and dev x is the counterpart on the device.

The routine in the presence of multiple GPUs with CUDA support, select the fastest.
If you want to manually select the GPU to use, there is the function:
void set device ID(int id);

where id is the integer that represents the device ID (CUDA picks the fastest device as device 0). The
function must be used before any CUDA call.

If you want to print the first n values of a vector in global memory, for the purpose of debugging, you can
use the function:
void print vector(double *d v, int size) where d v is the vector to print. It allocates the
memory needed for printing in main memory.

The evaluation of some particular function (as Rosenbrock) may require a reduction function (hopefully
parallel). With the minimization routine described here is also provided a good parallel reduction
function that comes with the NVIDIA SDK:
void my reduce(int n, int numThreads, int numBlocks,

int maxThreads, int maxBlocks, double* d idata, double *d odata, double

*d result)

For details visit: http://www.nvidia.com/content/cudazone/cuda sdk/

Data-Parallel Algorithms.html

14

C
en

tr
o

E
ur

o-
M

ed
ite

rr
an

eo
su

iC
am

bi
am

en
ti

C
lim

at
ic

i

CMCC Research Papers

ERROR INDICATORS AND WARNINGS

All errors and warnings arising from incorrect execution of the algorithm are shown on the screen as text.
These are also encoded in some variables as seen in section . If the input parameters are correct, a failure of
the routine is almost always due to a failure of the subroutine mcsrch for linear search. Indeed, the program
reports a warning or an error in the following situations:

GTOL is a double precision variable with default value 0.9, which controls the accuracy of the line search
routine mcsrch. If the function and gradient evaluations are inexpensive with respect to the cost of the
iteration (which is sometimes the case when solving very large problems) it may be advantageous to set
GTOL to a small value. A typical small value is 0.1.
Restriction: GTOL should be greater than 1.E-04. If GTOL is less than this threshold, the program sets
the variable to the default value and continue.

The repeated execution of the subroutine lbfgs is kept under control with the variable d iflag, which
is directly related to the parameter dev istate of cuda opt unlp solve. A return with d iflag=-1
indicates that the line search routine mcsrch failed due to errors in function, gradient, or tolerances. In
this case, the value of info provides further information (use this list because no message is shown on
the screen):

{ info=0, improper input parameters to the subroutine mcsrch.

{ info=-1, a return is made to compute the function and gradient.

{ info=1, the sufficient decrease condition and the directional derivative condition hold.

{ info=2, relative width of the interval of uncertainty is at most xtol (the machine precision).

{ info=3, number of function and gradient evaluations has reached maxfev.

{ info=4, the step is at the lower bound STPMIN.

{ info=5, the step is at the upper bound STPMAX.

{ info=6, rounding errors prevent further progress. there may not be a step which satisfies the
sufficient decrease and curvature conditions. Tolerances may be too small.

It may happen that, for a particular problem, the search direction is not descent. In this case, the
subroutine mcsrch ends with an error.

A common error occurs when the memory capacity of the GPU is not enough to contain the array
dev workvec which constitutes the space complexity of the algorithm. This error, which is managed by
the CUDA environment, could be solved partially by reducing the value of m.

ALGORITHMIC DETAILS

Here we report the algorithm in detail and some considerations on the variables involved.

(1) Choose x0, m, 0 < β′ < 1/2, β′ < β < 1, and a symmetric and positive definite starting matrix H0. Set
k = 0,
(2) Compute

dk = −Hkgk, (8)

xk+1 = xk + αkdk, (9)

where αk satisfies the Wolfe conditions:

f(xk + αkdk) ≤ f(xk) + β′αkg
T
k dk, (10)

TECHNICAL DOCUMENTATIONL-BFGS for GPU-CUDAReference Manual and User’s Guide

15

C
en

tr
o

E
ur

o-
M

ed
ite

rr
an

eo
su

iC
am

bi
am

en
ti

C
lim

at
ic

i

g(xk + αkdk)
T dk ≥ βgTk dk. (11)

(The first attempt is made with steplength α = 1)
(3) Let m = min k,m− 1. Update H0, m̂+ 1 times using the pairs {yj , sj}kj=k−m̂, i.e let

Hk+1 = (V T
k ...V

T
k−m̂)H0(Vk−m̂...Vk)

+ρk−m̂(V T
k ...V

T
k−m̂+1)sk−m̂s

T
k−m̂(Vk−m̂+1...Vk)

+ρk−m̂+1(V
T
k ...V

T
k−m̂+2)sk−m̂+1s

T
k−m̂+1(Vk−m̂+2...Vk)

...

+ρksks
T
k .

(12)

(4) Set k := k + 1 and go to 2.

First of all the user specifies the amount of storage to be used, by giving a number m, which determines the
number of matrix updates of the inverse Hessian Hk that can be stored. The more updates are stored, the
more accurate will be the approximate Hessian. However, the more vectors are stored, the higher will be the
cost of each iteration. The default value is likely to give a robust algorithm without significant expense, but
faster convergence can sometimes be obtained with significantly fewer updates.

Regard to the Wolfe conditions, as the Harwell subroutine VA15, the line search of cuda opt unlp solve is
terminated when

|g(xk + αkdk)
T dk| ≤ βgTk dk. (13)

is satisfied. ((13) is stronger than (5), which is useful in practice). We use the values β′ = 10−4 and β = 0.9,
which are recommended in [6].

The initial Hessian H0
k is approximated by the identity matrix, and after one iteration is completed, the methods

update it with γ0I instead of I, where

γ0 = yT0 s0/||y0||2 (14)

In this way is also introduced a scale in the algorithm.

STOPPING CRITERIA

As inferred from the above, the program terminates unexpectedly when an error occurs or, properly, when one
of the three conditions is verified:

1. ||g|| < eps·max(1, ||x||) at the point xk

2. The number of iterations is greater than icall.

3. The number of f evaluations per iteration is greater than maxfev.

For some problems, the default values of eps, icall or maxfev are too restrictive, and the algorithm
terminates prematurely while calculating best estimates.
Considering for example the extended Powell function implemented in the program driver: with n = 1.0E06,
m = 7, icall=2000, maxfev=20 and eps=1.0E-5, the method terminates for the third criterion. This is a
signal that the tolerance for the first stopping criterion is too low. Increase eps or m can help in this case.

16

C
en

tr
o

E
ur

o-
M

ed
ite

rr
an

eo
su

iC
am

bi
am

en
ti

C
lim

at
ic

i

CMCC Research Papers

Hardware Tesla C1060 specifications
Processor Intel R© CoreTM i7 (3.07GHz) Streaming Multiprocessors 30
RAM 12GB of DRR3 1333 Streaming Processor cores 240
Hard disk 500GB sata, 16MB cache, 7.200 SP core Frequency 1300 MHz
GPU 2x Tesla C1060 4GB RAM Memory Bandwidth 102GB/s

Table 1
Computing hardware specifications.

TESTING

In this section we compare the sequential and widespread version of L-BFGS, developed by J. Nocedal, with
cuda opt unlp solve in terms of time and accuracy, for the minimization of the Rosembrock function.
The experimental results were obtained using the following computing hardware:
The GPU of C1060 card supports IEEE standard for binary double precision floating-point arithmetic (IEEE
754-1985 [4]). Figure 1 shows the relative error between the estimates obtained at each iteration by the
L-BFGS Harwell routine and its GPU parallel porting. Only a slight loss in accuracy is measured between the
30-th and the 35-th iteration.

Figure 1:
Relative error between the estimates obtained at each iteration of the parallel and sequential software on Rosenbrok function with

n = 106 and m = 7.

As stopping criterion of all runs was used the following:

||gk|| < 10−5 ·max(1, ||xk||) (15)

where gk is the projected gradient at the k-th step. The problem size was selected to be large enough so that
GPU execution time could measured reliably, so the number of variables ranges from 5× 105 to 5× 107.
We achieved speedup of over 8× in double precision and 14× in single precision. For large scale problems

TECHNICAL DOCUMENTATIONL-BFGS for GPU-CUDAReference Manual and User’s Guide

17

C
en

tr
o

E
ur

o-
M

ed
ite

rr
an

eo
su

iC
am

bi
am

en
ti

C
lim

at
ic

i

the performance gain is increasingly more pronounced, as is shown in Figure 2

Figure 2:
Execution times for the minimization of the extended Rosenbrock function, using TESLA as parallel computing architecture.

cuda opt unlp solve is the result of several optimization steps, in each of which the source code profiling
was crucial. We have used the nVIDIA’s proprietary CUDA Visual Profiler [9].

The graph in Figure 3 indicates the percentage by which each kernel affects the overall computation time.
Observe that the most expensive part is related to routines of CUBLAS (ddot and daxpy), not due to a
customization. Furthermore, the part inherently sequential affects a small part of the total time of calculation.
To verify both the portability of our implementation, and the scalability of the parallel programming model we
decided to execute the same parallel code on a more recent CUDA architecture. The result in Figure 4 were
obtained by performing tests on a machine equipped with a FERMI 2.1 GPU.

Hardware Tesla C1060 specifications
Processor Intel R© CoreTM2 Quad (2.83GHz) Streaming Multiprocessors 8
RAM 4GB of DRR3 1333 Streaming Processor cores 384
Hard disk 500GB sata, 16MB cache, 7.200 SP core Frequency 822 MHz
GPU GeForce GTX 560 Ti 1GB RAM Memory Bandwidth 128.27GB/s

Table 2
FERMI Computing hardware specifications.

Even if the code is not optimized for the last FERMI architecture and the memory constraints are more
restrictive, the CUDA routine allows us to get quickly very satisfactory performance gain (20-30% s.p., 30-50%
d.p.), without additional efforts.
Furthermore the first computing environment (the TESLA), though older, has a faster processor for single-
threaded execution compared with the computing hardware using the FERMI architecture. The fact that the

18

C
en

tr
o

E
ur

o-
M

ed
ite

rr
an

eo
su

iC
am

bi
am

en
ti

C
lim

at
ic

i

CMCC Research Papers

Figure 3:
Percentage of kernel execution time over total time, per kernel. Kernels using CUBLAS are the two ones on the bottom. CPU
execution time is marked with stripes. In brackets the number of executions for a minimization of the Rosenbrock Function.

parallel software is twice as fast on the FERMI architecture shows that the sequential part of the code has
been greatly reduced.

The Harwell routine VA15 provides that the entire required memory space is known and therefore allocated
before any FLOP. It also provides that the space is organized in a contiguous sequence of vectors to be
processed, called Work Vector. In Figure 5 a graphical representation is shown.

The GPU can only process the data in its global memory. For parallel processing is therefore necessary to first
transfer the input data from CPU memory to the GPU.
To avoid continuous relatively slow data transfer from the host to the device, it was decided to store the entire
Work Vector in the device prior to any processing. In this way, the overhead is minimized. A drawback of this
kind of storage is that since the device memory is small with respect to the one on the host, the size of the
problem that can be solved is limited by the size of the Work Vector that the GPU can handle locally.

TECHNICAL DOCUMENTATIONL-BFGS for GPU-CUDAReference Manual and User’s Guide

19

C
en

tr
o

E
ur

o-
M

ed
ite

rr
an

eo
su

iC
am

bi
am

en
ti

C
lim

at
ic

i

Figure 4:
Speed up achieved by parallel programs with FERMI architecture in single and double precision.

Figure 5:
Work Vector for the L-BFGS algorithm. In green are shown the first N locations used to store the gradient and other temporary

information; from memory location n+1 to n+m there are the m ρ scalars; from n+m+1 to n+2m there are α numbers used in the
formula for the calculation of Hg; in the following successive m*n location, colored in blue, are kept the last m search steps; in the

last m*n locations, colored in red, we find the m gradient differences.

Bibliography

[1] I. Bongartz, A.R. Conn, N.I.M. Gould, and Ph.L.
Toint, “CUTE: Constrained and Unconstrained
Testing Environment,” ACM Trans. Math. Software,
Volume 21, 1995.

[2] L. D’Amore, G. Laccetti, D. Romano, G. Scotti,
and A.Murli, “Towards a parallel component in a
GPU-CUDA environment: a case study with the
L-BFGS Harwell routine,” Preprint of Dipartimento

di Matematica e applicazioni. Univerity of Naples
Federico II, IJCM, 2013

[3] Harwell Subroutine Library, Release 10 (1990).
Advanced Computing Department, AEA Indus-
trial Technology, Harwell Laboratory, Oxfordshire,
United Kingdom.

[4] ANSI/IEEE 754-1985. American National Stan-
dard | IEEE Standard for Binary Floating-Point
Arithmetic. American National Standards Institute,
Inc., New York, 1985.

20

C
en

tr
o

E
ur

o-
M

ed
ite

rr
an

eo
su

iC
am

bi
am

en
ti

C
lim

at
ic

i

CMCC Research Papers

[5] J.J. Moré and D.J. Thuente, “Line search algo-
rithms with guaranteed sufficient decrease,” ACM
Trans. Math. Software, 1994.

[6] D.C. Liu and J. Nocedal, “On the limited memory
BFGS method for large scale optimization, Math.
Programming,” Volume 45, 1989.

[7] NVIDIA. NVIDIA CUDA Compute Unified Device
Architecture - Programming Guide Version 1.1,

2007.

[8] NVIDIA. CUBLAS Library. NVIDIA Corporation,
2009. http://www.nvidia
.com/

[9] NVIDIA. CUDA Visual Profiler,
2009. http://developer.download.
nvidia.com/compute/cuda/2 2/toolkit/ docs/cud-
aprof 1.2 readme.html.

c© Centro Euro-Mediterraneo sui Cambiamenti Climatici 2013

Visit www.cmcc.it for information on our activities and publications.

The Euro-Mediteranean Centre on Climate Change is a Ltd Company with its registered office and
administration in Lecce and local units in Bologna, Venice, Capua, Sassari, Viterbo, Benevento and Milan.
The society doesn’t pursue profitable ends and aims to realize and manage the Centre, its promotion, and
research coordination and different scientific and applied activities in the field of climate change study.

