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SUMMARY China currently suffers from the impacts of tropical cyclones,
with an average of 9 landfalls per year leading to approximately $3.9 billion
in damages and 472 lives lost. In this analysis, we estimate the impact of
socioeconomic and climatic changes on these disaster losses. We first
calculate historical impact functions including typhoon damage, fatality,
injury, homelessness, and people affected. We then use C-STORM, the
China-Specific Typhoon Outcomes integRated assessment Model, to
estimate the impact of climate and socioeconomic change on losses over
the next one hundred years. Our results show that climate change will
reduce the overall frequency of landfalls but increase the frequency of
intense storms at landfall. We estimate that socioeconomic change will
increase damages by approximately 118% across China, while
development will decrease other losses including fatalities and injuries.
Overall, climate change is expected to slightly reduce the expected losses
from typhoons, with damages, fatalities, injuries, homelessness, and people
affected decreasing by approximately 7%. However, disagreement remains
across climate models and these general trends mask underlying
heterogeneous losses across provinces. These findings are important to
inform public policy on typhoon warnings, public adaptation, and risk
management planning.

Keywords: Economic Damages, China, Natural Disasters, Climate Change

JEL: D81, N55, O1, Q54, R5



1 Introduction

Eastern coastal China is at high risk for typhoon landfalls and contains approximately one quarter

of the Chinese population and nearly 55 percent of gross national product (Fangjin and Ziniu,

2010). From 1960 to 2010, an average of 7.3 landfalls per year struck mainland China and

8.9 landfalls per year including Taiwan, Macau, and Hong Kong1. As a result, China suffers

from approximately $3.9 billion (2010 $USD) in direct economic damages from typhoons and

an average of 472 lives lost each year. Damages have increased over the past three decades

due to socioeconomic growth while fatalities have remained relatively constant (Zhang, Liu, and

Wu, 2009). The number of landfalls per year has decreased slightly over the second half of the

twentieth century (Fangjin and Ziniu, 2010), yet the power of storms in the Western Pacific Ocean

has increased by about 75 percent from 1970 to 2000 (Emanuel, 2005). There is uncertainty with

respect to future impacts due to climate and socioeconomic change over the next one hundred

years.

Typhoons, a type of tropical cyclone, are meteorologically identical to hurricanes except lo-

cated in the Western Pacific Ocean rather than the Atlantic or Eastern Pacific Oceans (Emanuel,

2005). Wang et al. (2012) reviews the relevant natural science literature surrounding extreme

weather events in China, including typhoons. They find consistency among results that cyclones in

the Western North Pacific experience large interannual and interdecadal variability in frequency,

intensity, genesis, and track (Chan and Xu, 2005; Jones et al., 2007; Sheperd and Knutson, 2007).

Many factors drive this result, including sea surface temperatures (Emanuel, 2005; Webster et

al., 2005), El Nio-Southern Oscillation (Elsner and Liu, 2003) and other large scale circulation

patterns (Zhau and Cui, 2008), as well as more remote factors through teleconnectivity (Wang,

2012). Scientists are still uncertain about the impact of climate change on tropical cyclone for-

mation, strength, and termination. Data limitations in the historical record make it hard to find

evidence of climate change in current typhoon patterns (Knutson et al., 2010). Various mod-

els have been used to project typhoon characteristics under climate change scenarios, although

cyclone intensity and path are predicted with less confidence than frequency. Similarly, global

estimates of cyclone changes are thought to be more accurate than regional predictions (Wang

et al., 2012). Gualdi et al. (2008) found a decrease in the number of typhoons in the Western

North Pacific ocean in future climate with increased carbon dioxide concentrations. These results

are mirrored by work from Stowasser et al. (2007) and Zhao et al. (2009). However, Emanuel et

al. (2008) found an increased frequency in typhoons in the same region. The specific impact for

Chinese landfalls remains uncertain, as changes of typhoons in the Western North Pacific Ocean

do not necessarily translate equivalently to changes in landfall characteristics in all locations.

Thus, further research is needed specific to China.

We investigate the impact of socioeconomic and climate change on typhoon losses in mainland

1Calculated by the author using IBTrACS v03r03 data (Levinson et al., 2012)
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China, Hong Kong, Macau, and Taiwan. This paper adds to the literature in four ways. First, we

modestly expand the theoretical foundation laid by Mendelsohn and Saher (2011) by including

multiple outcomes and a calculation for the impacts of socioeconomic change. Second, we develop

C-STORM, the China-Specific Typhoon Outcomes integRated assessment Model. Drawing from

Mendelsohn, Emanuel, Chonabayashi, and Bakkensen (2012), we refine their methodology and

apply it to a Chinese context, setting up the possibility that this framework may be applied to

additional countries and regions around the globe. Third, we employ a spatially-refined county-

level dataset for mainland China as well as Taiwan, Macau, and Hong Kong and estimate typhoon

loss functions. With the results, we use typhoons simulated in both current and future climate

to calculate spatially-refined impacts of both climate and socioeconomic change. Unlike previous

literature focusing on damages and fatalities, we also include homeless, injured, and affected

results. Lastly, we calculate impacts on average and high-intensity tail characteristics to test if

the frequency, intensity, or path of tail events will be more harmful in the future.

Although some previous literature exists quantifying the expected climate change impacts

of tropical cyclones at the global (Bakkensen, 2013; Mendelsohn et al., 2012), Atlantic basin

(Hallegate 2007), and United States (Nordhaus, 2012; Mendelsohn, Emanuel, and Chonabayashi,

2011) levels, only one working paper has considered the impacts on China. Shi (2013) uses Chinese

government data and only considers direct economic damages. Further, the work does not include

Taiwan, Macau, or Hong Kong. A Chinese-language literature exists on typhoon impacts, but

access to translated articles is difficult. More broadly, the disaster impacts literature is growing

(see reviews by Cavallo and Noy, 2009; and Kousky, 2012), and several paper have investigated

factors influencing damages (Toya and Skidmore, 2007; Kellenberg and Mobarak, 2007) as well

as fatalities (Kahn, 2005; Sadowski and Sutter, 2005). Little work has systematically focused on

additional losses such as injury, homelessness, and number affected.

The paper is organized as follows: Section 2 provides a theoretical framework for the analysis.

Section 3 describes the C-STORM integrated assessment model and data used. Section 4 presents

the model results and discussion. Section 5 concludes. The appendix provides additional model

results.

2 Theoretical Foundation

The theoretical foundation for this analysis is from Mendelsohn and Saher (2011) and has been

applied to tropical cyclones in the United States by Mendelsohn, Emanuel, and Chonabayashi

(2011) as well as Mediterranean hurricanes by Bakkensen (2013). In this analysis, we extend the

damages theory to also include other losses such as fatalities, homelessness, injury, and people

affected.

We assume that Lij is a vector of losses from tropical cyclone i in location j. These losses can

take many forms, including direct economic damages from capital and infrastructural destruction,
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human fatality, both temporary and permanent homelessness, injury, and affected people requiring

assistance. Losses are based on both a vector of characteristics from storm i when it makes landfall

at location j, Xij , and local socioeconomic factors, Zij , in location j when storm i hits:

Lij = L(Xij , Zij)

Losses increase in the intensity of the storm, dL
dX > 0, but losses can either increase or decrease

in socioeconomic characteristics. For example, as income increases, there may be more capital in

harm’s way to be damaged. On the other hand, if protection is a normal good, actors may take

steps to reduce the magnitude of impacts through adaptation. Thus, the direction of impact for

socioeconomic variables remains an empirical question.

The probability, Πij , that storm i will make landfall in location j during a given period of time

depends on both the storm characteristics, Xij , and the climate, C:

Πij = Π(Xij , C)

The probability of landfall decreases as the strength of the storm increases, dΠ
dX < 0. The direction

of impact of climate is an empirical question.

Expected losses in a given region, E[L], equal total losses multiplied by the probability of

landfall, integrated over all landfalls and locations within the region:

E[L] =

∫∫
IJ

Π(Xij , C)L(Xij , Zij)dJdI

With this framework, the impact of socioeconomic and climate change is calculated. The so-

cioeconomic change impact, SC, is equal to expected losses after a change in socioeconomic

characteristics minus the expected losses before the change, holding all other factors including

climate constant at the current levels:

SC = E[L(Z1, C0)] − E[L(Z0, C0)]

Additionally, CC, the impact of climate change on cyclone losses, is equal to the expected losses

after a change in climate minus the magnitude of expected losses before the climate has changed:

CC = E[L(Z1, C1)] − E[L(Z1, C0)]

To separately isolate the impacts of SC and CC, it is important to hold everything else constant

at the correct levels. For SC, we hold climate constant at the present value. For CC, we hold

socioeconomic factors constant at the future level. This ensures that climate change impact

calculations are not obfuscated by contemporaneous changes and represent a realistic future state

of the world when climate will likely be different.
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3 Data and Methodology

We us an integrated assessment model to calculate the impact of climate and socioeconomic change

on typhoon damages in China. This model was first developed for extreme events in general by

Mendelsohn and Saher (2011). Mendelsohn, Emanuel, Chonabayashi, and Bakkensen (2012)

refined the model for tropical cyclones, developing the Tropical Cyclone Integrated Assessment

Model (TCIAM). Bakkensen (2013a) improved upon the TCIAM by enhancing the historical

dataset, including controls for underlying cyclone risk rates and storm intensity. This analysis

develops a detailed Chinese tropical cyclone integrated assessment model called the China-Specific

Typhoon Outcomes integRated assessment Model (C-STORM).

Figure 1 below shows the six steps of the C-STORM model, which follow directly from Mendel-

sohn, Emanuel, Chonabayashi, and Bakkensen (2012) in steps 1, 2, and 3. Steps 4, 5, and 6

parallel their analysis, but are applied in a more spatially-refined analysis for China instead of

the globe and also include additional unexplored cyclone outcomes using data from Bakkensen

(2013b). C-STORM begins with an emissions trajectory which is translated to climate outcomes

by four general circulation models. Third, the climate results are downscaled to resolve cyclones

using a cyclone generating model from Kerry Emanuel. Fourth, socioeconomic characteristics

are projected from the year 2000 to 2100. Fifth, we estimate functional relationships between

explanatory variables and cyclone impacts using historical data. We value the simulated storm

landfalls using the functions from step five. Lastly, we separately calculate the impact of cli-

mate and socioeconomic change on typhoon damage, fatality, injury, loss of homes, and number

affected. Below are additional details of the C-STORM steps.

1. Emissions Trajectory The first step of C-STORM sets an anthropogenic emissions

scenario. We use the Intergovernmental Panel on Climate Change Special Report: Emissions

Scenarios trajectory A1B. The A1B path assumes balanced and convergent economic growth

with a mixture of fossil and renewable energy sources. The trajectory lies between emissions

trajectories A2, a higher bound, and B1 and B2, both lower bounds. The scenario focuses on

economic growth rather than environmental preservation (Nakicenovic et al., 2000). Figure 2

below details the emissions pathways for carbon dioxide (CO2), Nitrous Oxide (N2O), Methane

(CH4), and Sulfur Dioxide (SO2)2.

Comparing SRES A1B with other SRES scenarios, A1B has a higher estimated temperature

increase than B1, A1T, and B2, yet is expected to be cooler than A2 and A1F1. In the forth-

coming IPCC report, the AR5, new concentration pathways are developed called Representative

Concentration Pathways (RCPs). Comparing the SRES A1B scenario, it is most similar to, but

slightly higher than, the RCP6. Figure 3 below shows a comparison of SRES and RCP estimated

temperature increases (Rogelj, Meinshausen, and Knutti, 2012).

2While sulfur dioxide is not a greenhouse gas, it can have indirect effects on climate through atmospheric chemistry
relevant to global mean temperature (Unger et al., 2006).
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Figure 1: C-STORM Methodology

1. Emissions Trajectory

2. Climate Scenario

3. Tropical Cyclone Behavior

4. Socioeconomic Projection

5. Impact Functions

6. Impact Estimates

Figure 2: IPCC SRES Anthropogenic Emissions Scenarios (Houghton et al., 2001)
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Figure 3: IPCC SERS versus RCP secnarios (Rogelj, Meinshausen, and Knutti, 2012)
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2. Climate Scenario General circulation models translate emissions trajectories into climate

outcomes. Figure 4 below depicts estimates of global surface warming from a hierarchical ensemble

of climate models. Mean surface warming equals approximately 2.8◦Celsius with a likely range

of between 1.4 and 4.4◦Celsius (Solomon et al., 2007). Similar to Mendelsohn et al. (2012),

we employ four climate models: Centre National de Recherche Meteorologiques version CM3

(CNRM; Gueremy et al., 2007), European Centre for Medium Range Weather Forecasts-Hamburg

version 5 (ECHAM; Cubasch et al., 1997), Geophysical Fluid Dynamics Laboratory version CM2.0

(GFDL; Manabe et al., 1991) and Model for Interdisciplinary Research on Climate version 3.2

(MIROC; Hasumi and Emori, 2004). Each climate model predicts a different change in mean

surface temperature. Outputs range across the likely warming estimated by the IPCC, with

mean predicted increases of 2.9◦C for CNRM, 3.4◦C for ECHAM, 2.7◦C for GFDL, and 4.5◦C for

MIROC (Mendelsohn et al., 2012).

Figure 4: IPCC SRES Mean Surface Warming Projections (Solomon et al., 2007)

3. Tropical Cyclone Behavior While a few general circulation models have a spatial

resolution fine enough to resolve hurricanes (Gualdi, Scoccimarro, and Navarra, 2008; Hasegawa

and Emori, 2005; Knutson and Tuleya, 2004), many are currently still too coarse. Because of

this, we use simulated cyclone track output from Emanuel, Sundararajan, and Williams’ (2008)

hurricane generating model. In the model, simulated storm seeds are planted in a modeled

ocean. If storms develop, the subsequent tracks are recorded at two hours intervals. Simulated

characteristics include latitude, longitude, minimum sea level pressure, radius of maximum wind,

and maximum wind speed. These tracks are identical to the Western Pacific Ocean tracks of
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Mendelsohn et al. (2012), including 3,000 simulated storms in both current (1980-2000) and

future (2080-2100) climate for each of the four climate models. Since the storms were seeded in

the Western Pacific, not all storms made landfall with China. We processed tracks in ArcGIS

to locate the point of first landfall in China. Storms that made landfall in Taiwan, Hong Kong,

and Macau were allowed to continue and make landfall on mainland China and both landfalls

were recorded. In addition, landfalls on mainland China within 50 kilometers of Hong Kong and

Macau are counted also as landfalls for mainland China and the respective Special Administrative

Regions, to account for near misses.

Figure 5: Simulated Tropical Cyclone Tracks by 2-Hour Intensity

4. Socioeconomic Projection The IPCC A1B emissions trajectory assumes that global

population will be 7.1 billion and world Gross Domestic Product will be $529 trillion in the year

2100 (Nakicenovic et al., 2000). But these global scenarios do not include country-level projec-

tions. Thus, we use the United Nations medium-projections for future country-level population

coupled with a constant income per capita growth rate of 2 percent as our base socioeconomic

change assumptions. For sensitivity, we also include the five Shared Socioeconomic Pathways

(SSPs), developed to offer a common set of socioeconomic projections at the country and regional

levels (O’Neill et al., 2011). Multiple institutions model country-level population and gross do-

mestic product with common setups, but output differs due to varying model assumptions. We

use results from the Organisation for Economic Co-operation and Development (OECD) Environ-
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mental and Growth model. Separate pathways are provided for mainland China, Taiwan, Hong

Kong, and Macau.

Figure 6: Five Shared Socioeconomic Pathways (O’Neill et al., 2011)

SSP1 represents an optimistic pathway with few challenges for mitigation and adaptation,

leaving a world with fewer people and higher incomes. SSP2 represents a middle of the road

scenario for gross domestic product and population, with global incomes and populations growing

at a modest pace and cross-country income disparities slowly shrinking (O’Neill et al., 2011).

The SSP 2 storyline assumes that from 2010 to 2100, incomes in mainland China will increase by

more than 1,000%, raising from $7,616.23 per person to $105,498.65 in the year 2100. This will be

coupled with more than 40% decrease in population density. Taiwan and Hong Kong are expected

to enjoy income growth of 175% and 275%, respectively over the same period, with population

density decreasing by 26 percent in Taiwan but increasing by 20 percent in Hong Kong. Macau

is expected to experience the slowest income growth, with only a 50 percent increase in income

and 34 percent increase in population over the next 90 years. SSP3 envisions a fragmented future

world with many challenges to mitigation and adaptation, resulting in higher populations and

sluggish income growth. SSP4 represents an unequal world with middle incomes and population

growth. SSP 5 describes a world with very high incomes and larger populations. See Table 9 in

the Appendix for a full summary of pathway results.

5. Impact Functions We use historical data to estimate the relationship between cyclone

outcomes including direct economic damages, fatalities, injuries, number of homeless, and number

affected.
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We estimate outcome-specific functions based on historical data using Ordinary Least Squares

in the following form:

ln Impactij = β0ln Incomeij + β1ln Popij + β2ln Intensityij + β3ln Distanceij + uij (1)

Where Impactij is the impact of cyclone landfall i in location j. We consider five specific impacts:

direct economic damages, number of lives lost, homeless, injured, and affected. We assume

these outcomes are a function of both socioeconomic and cyclone characteristics at the location

of landfall. Socioeconomic characteristics include per capita income (Income) and population

density (Pop). Cyclone characteristics include the minimum sea level pressure (Intensity) and

distance of closest approach (Distance, equal to 0 if the storm makes direct landfall and the

natural log of the distance of closest approach if the storm does not make direct landfall). We

use the natural log of all variables in the regression, so estimated coefficients are interpreted as

elasticities.

Table 1: Tropical Cyclone Landfall Summary Statistics

Variable Observations Mean Standard Deviation Minimum Maximum

Damages (million $USD) 886 826 5,240 0.01 138,741
Fatalities (ppl) 1062 393 6051 1 138,866
Injuries (ppl) 463 869 7236 1 138,849

Homeless (ppl) 319 56,401 144,204 23 1,110,020
Affected (ppl) 832 564,646 1,964,036 3 29,600,000

Income per capita (PPP $USD) 1410 $11,420 $11,994 $374 $67,723
Population density (ppl/km.sq.) 1410 448 1,526 0.01 33,922

Max. wind speed (kts) 1233 66 24 18 141
Min. sea-level pressure (mbar) 1354 972 24 885 1,012

We use data from Bakkensen (2013) to run impact functions using global historical data on

typhoon landfalls. The dataset contains more than 1000 landfalls from 1960 to 2010, representing

approximately 40 percent of all landfalls during this period. Historical typhoon outcomes are from

EM-DAT International Disaster Database. Very low impact landfalls that do not meet EM-DAT’s

inclusion criterion are omitted. Outcomes include direct economic damages, lives lost, and number

injured, homeless, and affected (CRED, 2012). Historical cyclone characteristics are from NOAA

IBTrACS v03r03 (Levinson et al., 2012). Country-level time series data on population density and

income per capita were taken from the Penn World Table v7.01 and Columbia CIESIN’s Gridded

Population of the World v3. County-level socioeconomic controls for the year 2000 are from

China Data Online as well as country census data from the United States, India, the Philippines,

Australia, Japan, and at the state-level for Mexico. We calculate county variables as a fraction

of country aggregates and assume the fractions do not change over time, thereby creating a panel

of county-level socioeconomic data. Lastly, simulated cyclone tracks are from Kerry Emanuel of
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M.I.T. and are a subset of the sample used by Mendelsohn et al. (2012). We do not aggregate

data to the year-county level, as other studies have done. Instead, the panel is unbalanced as some

locations receive more than one landfall in a year. Locations receiving no landfalls are excluded

from the sample. Table 1 details the sample summary statistics.

6. Impact Estimates In the final step of C-STORM, we use the impact functions from step

5 to estimate outcomes from the simulated cyclone landfalls in step 3. Holding climate constant,

we first change socioeconomic conditions through the storylines in step 4. We then calculate the

impact of socioeconomic changes from 2000 to 2100 on typhoon outcomes. Second, holding society

constant at year-2100 projected conditions, we vary climate to calculate the impact of climate

change on typhoon outcomes in China. Results from various steps are presented in section 4

below.

4 Results

In this section, we present results regarding the impact of climate change on tropical cyclone

landfall behavior (from Step 3 of C-STORM) as well as the impact of socioeconomic and climate

change on typhoon impacts (from Steps 5 and 6 of C-STORM). Extended results are found in

the appendix.

Tropical Cyclone Behavior Climate affects tropical cyclones, although debate remains

surrounding the impact of projected climate change scenarios on tropical cyclone behavior. Using

the simulated tropical cyclones, we calculate the impacts of climate change on cyclone intensity,

frequency, and geographic distribution at landfall. Table 2 summarizes the average results. With

regard to frequency, there is disagreement across the climate models. The CNRM and ECHAM

models find modest increases in the frequency of simulated cyclone landfalls in mainland China,

Hong Kong, Macau, and Taiwan, while the GFDLCM and MIROC models find decreases in

landfall frequency of approximately 28 and 16 percent, respectively. Averaging across the models,

we find overall the frequency of landfalls is expected to decrease by 7 percent, or to approximately

8.26 landfalls per year across mainland China, Hong Kong, Macau, and Taiwan. Additionally,

we find a decrease in the average intensity of typhoon landfalls, with the maximum wind speed

decreasing by about 3 percent and the minimum sea level pressure increasing by 0.09 percent3.

Here, three of the four models agree, while MIROC reports an increase in intensity of storms both

in terms of maximum wind speed and minimum sea level pressure.

We also look at the distribution of storm characteristics across provinces. Figure 7 displays

the province-level impacts of climate change on storm frequency and intensity, calculated by

3Unlike maximum wind speed, minimum sea level pressure has an inverse relationship with intensity: as a storm
intensifies, the barometric pressure falls
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Figure 7: The Impact of Climate Change on Average Regional Landfall Characteristics
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Table 2: Climate Change Impact on Cyclone Landfall Characteristics

Climate Model Frequency (%) Max. Wind (%) MSLP (%)

CNRM 6.93 -1.80 0.06
ECHAM 8.50 -4.11 0.16

GFDLCM -27.98 -13.11 0.58
MIROC -16.26 8.57 -0.44

Average -7.20 -2.61 0.09

the unweighted average across the four climate models. See the appendix for the model-specific

results. We find geographic variation in climate change impacts. Southeastern China is expected

to experience a reduction in the frequency of storms, with a decrease of between 15 and 30

percent in Yunnan, Guangxi, Zhejiang, and Jiangsu provinces. These regions can also expect a

small decrease, of between 2 to 10 percent, in the maximum wind speed of the average storm.

In contrast, the far Northeastern province of Liaoning is expected to see around a 15 percent

increase in the frequency, due to increased occurrence of storms in higher latitudes. Coupled

with the increase in frequency, Northeastern mainland China also can expect increases in the

average intensity of storms, by around 10 and 30 percent in Shandong province and Shanghai,

respectively. Thus, future work and policy should focus on these regions, to ensure that actors

are properly planning for the changing risks. Average landfall frequency and intensity in Hong

Kong, Macau, and Taiwan are expected to remain relatively constant over the next century.

Next, we investigate climate change impacts on the tail of the typhoon distribution and present

statistics on changes in the frequency and intensity of Category 4 and 5 storms in Figure 8. These

results show an increased frequency of intense storms. Macau and Fujian Province experience

more than a doubling of intense storms, and Guangdong Province and Hong Kong see increases

of less than 50 percent. Taiwan and Hainan remain relatively stable. Average intensity increases

minimally. Thus, strategic planning for more frequent high category storms is important. We

caution over-interpretation of the results, however, as these statistics are driven by relatively few

observations. We recommend that future work use a much larger dataset of several thousand

simulated high category storms for each model and climate scenario to better characterize the

underlying tail distribution. We also only present results for Southeastern China, as the rest of

mainland China receives relatively few intense storms and therefore more prone to outliers driving

the results.

Impact Functions We next turn to Step 5 of C-STORM, estimating the impact functions.

We run the regressions presented in the Methodology section using Ordinary Least Squares.

Extensive model testing was preformed in Bakkensen (2013b) including both cross sectional and

error component models. Table 3 shows the results for the valuation functions. Robust standard

errors are included in the parentheses. Each column represents a different typhoon loss, including
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Figure 8: The Impact of Climate Change on Category 4 and 5 Cyclone Characteristics

15



damages, fatalities, injuries, homeless, and total number affected. Explanatory variables include

per capital income, population density, as well as the minimum sea level pressure at landfall and

the distance of closest approach, if the storm was not a direct hit. Our model takes a log-log

functional form, and therefore estimated coefficients can be interpreted as elasticities. We also

present C-STORM results using an East Asia-Specific valuation function in the Appendix. The

results are qualitatively identical, except for damages.

Table 3: Historical Impact Functions

(1) (2) (3) (4) (5)

VARIABLES Ln Damages Ln Fatalities Ln Injured Ln Homeless Ln Affected

Ln Income Per Capita 0.447*** -0.616*** -0.469*** -0.665*** -0.890***
(0.0741) (0.0439) (0.0809) (0.128) (0.0837)

Ln Population Density 0.0688 0.165*** 0.265*** 0.0357 0.105
(0.0548) (0.0314) (0.0678) (0.0876) (0.0672)

Ln Pressure -29.48*** -9.707*** -18.91*** -23.60*** -20.11***
(3.150) (2.240) (4.052) (5.040) (3.331)

Ln Distance -0.396*** -0.189*** -0.217*** -0.243*** -0.260***
(0.0400) (0.0210) (0.0449) (0.0481) (0.0366)

Constant 216.7*** 74.34*** 136.8*** 176.4*** 156.0***
(21.68) (15.48) (27.95) (34.59) (22.89)

Observations 856 1,020 448 307 802
R-squared 0.223 0.229 0.165 0.198 0.192

The model results are consistent with our ex-ante expectations. First, it is important to note

that the socioeconomic elasticities are less than one at the 99 percent confidence interval. Thus, we

caution the use of normalization assumptions that implicitly assume an elasticity of one (Hsiang

and Narita, 2012; Nordhaus, 2010; Pielke et al., 2008; Pielke and Landsea, 1998). This implies

some level of adaptation through both development and population density. Richer and more

urban areas are protective. Development is very protective, as fatalities, injuries, homelessness,

and total number affected decreases quickly with increases in income per capita. We estimate

elasticities of between -0.89 and -0.47 for these impacts. Damages, on the other hand, increase

with development with an estimated elasticity of 0.48. This shows that development increases

the capital stock in harm’s way. This drives up damages. However, damage increases do not keep

pace with economic growth, implying some protection taking place. Similarly, while we find that

increases in population increase all losses, with estimated elasticities of between 0.04 and 0.27,

we do not find that these losses are proportional with population.

For the typhoon variables, more intense storms characterized by lower minimum sea level

pressure leads to higher loss across all impacts. Damages are highly nonlinear with respect to
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pressure, as a 1 percent decrease in pressure leads to an average increase of 29 percent in damages.

Fatalities are the least sensitive to storm intensity, which could be evidence of the effectiveness of

hurricane warning and evacuation programs, as well as the relative randomness of the deaths that

do occur. We also find, consistent with intuition, that losses drop at roughly the one-third power

as, conditional on not making landfall, the distance of closest approach of a typhoon increases.

Impact Estimates With the impact functions from Table 3 above, we estimate the changes

in typhoon losses from both socioeconomic and climate change in Step 6 of C-STORM. First,

we calculate the impact of socioeconomic change on typhoon losses. To do so, we hold climate

constant at the current level. We only vary socioeconomic factors to isolate the impact of changes

in human communities. Recall that for our main future baseline results, we use the United Nations

medium-scenario projections for population and a 2% constant growth rate for per capita income.

Results are presented in Table 4.

Table 4: The Impact of Socioeconomic Change on Typhoon Losses

Damages Fatalities Injuries Homeless Affected
(Billion $USD/yr) (Ppl/yr) (Ppl/yr) (Ppl/yr) (Ppl/yr)

Current Baseline 3.9 472 837 33,837 4,200,000
2100 Baseline 8.5 151.8 343 10,260 840,513

% Change 117.8% -67.8% -59.1% -69.7% -78.0%

We find that socioeconomic change will have a dichotomous impact on typhoon losses. Given

the much richer future world and the positive income elasticity of damages, China suffers from

an almost 120% increase in damages, from approximately $3.9 to $8.5 billion in expected annual

losses. Keep in mind that due to the economic growth, China will be much richer so this represents

a smaller fraction of gross domestic product relative to today. Nonetheless, it is important to

quantify the estimated impacts in order to properly manage the changing risks. The other losses,

including fatalities, injuries, homelessness, and total number affected, are expected to decrease

with socioeconomic growth as we find that growth is protective. However, these results should

be interpreted with caution. With proper planning and effort, they represent realistic targets

for future loss reductions. But as each storm can be dangerous, we must continue with efficient

warning and evacuation plans as these results are not guaranteed.

We present the regional impacts of socioeconomic change on typhoon losses in Table 5. As all

of mainland China has the same rate of socioeconomic growth in the United Nations projections,

the results are the same across mainland China. The variation across locations is due to changes in

population growth rates by the United Nations. Taiwan is expected to have the greatest reduction

in population density, at around -39 percent, it has the least increase in damages coupled with the

greatest reduction in other losses. However, the vast changes in socioeconomic condition across

the century dominate relatively small regional differences in income and population, leading to
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Table 5: The Impact of Socioeconomic Change on Regional Typhoon Losses

Location Damages Fatalities Injuries Homeless Affected

Mainland China 119.8% -67.6% -58.7% -69.6% -79.9%
Hong Kong 121.1% -67.0% -57.5% -69.5% -79.7%

Macau 126.8% -64.6% -52.3% -69.0% -78.7%
Taiwan 112.8% -69.8% -63.0% -70.1% -80.8%

little variation in expected impacts from socioeconomic change across mainland China, Hong

Kong, Macau, and Taiwan.

Table 6: The Impact of Climate Change on Typhoon Losses

Damages Fatalities Injuries Homeless Affected
(Billion $USD) (People) (People) (People) (People)

2100 Baseline 8.5 151.8 343 10,260 840,513
CNRM 7.6% 8.2% 9.6% 17.8% 15.8%

ECHAM 7.2% 4.1% 3.6% 0.5% 0.7%
GFDLCM -46.9% -33.6% -39.6% -43.9% -41.2%
MIROC 2.1% -10.1% -4.5% 1.3% -1.8%

Average -7.5% -7.9% -7.7% -6.1% -6.6%

Next, we discuss our results regarding the impact of climate change on typhoon damages in

mainland China, Hong Kong, Macau, and Taiwan. Table 6 summarizes the average results across

the four climate models: CNRM, ECHAM, GFDLCM, and MIROC. Two models, CNRM and

ECHAM, predict increases across all typhoon losses, with an average of 7 percent increases in

damages and between 1 and 17 percent increases in homelessness. This is driven mainly due

to the increased frequency of landfall in both models, although ameliorated by small reductions

in intensity. The results of the MIROC model predict modest impacts, with small increases in

damages and homeless given the larger pressure elasticities and increase in storm intensity, and

moderate reductions between 2 and 10 percent in other losses. GFDLCM remains the most

optimistic model, predicting large decreases in both storm intensity and frequency leading to

reductions of between 33 and 46 percent in all losses. Overall, the impacts of climate change

are more complex than changes in intensity and frequency. Storm paths are also influenced by

climate, leading to differing frequencies and intensities of landfall across geographic space with

different underlying socioeconomic factors at play. However, the changes in storm frequency still

are a dominant force in these climate change impact results.

We present our spatially disaggregated results in Figure 9 calculated by an equal-weighted

average across the four climate model outcomes. As foreshadowed in our regional typhoon landfall

characteristics, we find heterogeneous climate change impacts across China. Given reductions in
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Figure 9: Average Regional Climate Change Impacts, % Change

19



the average storm frequency and intensity, Southeastern China, Hong Kong, Macau, and Taiwan

have expected decreases across all typhoon losses, with Zhejiang and Jiangsu Provinces seeing

almost 50 percent reductions. Given the increases in frequency and intensity, Northeastern China

including all losses in Liaoning, as well as damages in Shangdong and Shanghai are expected to

increase. This is important for both public and private planning.

Figure 10: Climate Change Impacts on Regional Typhoon Damages, % Change

Lastly for our climate change results, we present detailed results for climate change damages

and fatalities to illustrate areas of consensus and disagreement across climate models. We use

fatality results because they are characteristic of the reductions also seen in injury, homelessness,

and total affected. We present results regarding damages because they are not. We include

figures for injury, homeless, and affected in the appendix. Figure 10 displays the regional impacts

of climate change on typhoon damages. We find qualitative agreement across all four models only

in Jiangsu Province, with expected reductions in damages. Six of the ten regions have two models

predicting increases while the other two predict decreases. In line with the aggregate averages,

GFDLCM consistently predicts reductions in damages across much of mainland China as well as

Taiwan, Hong Kong, and Macau.

We present parallel results for fatalities in Figure 11. In this figure, we graph the province-level

estimated impacts of climate change on typhoon fatalities. Overall, while disagreement across

the models remains, a few trends are present. First, the GFDLCM model remains optimistic,

predicting large reductions in fatalities across all regions except Shanghai. The MIROC model

predictions are also more similar with GFDLCM, leaving the CNRM and ECHAM models as

the main drivers of most pessimistic outlooks, especially in Guangdong, Taiwan, and Liaoning

regions. Jiangsu continues to be a region of agreement across the models. Zhejiang has the
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Figure 11: Climate Change Impacts on Regional Typhoon Fatalities, % Change

closest agreement across the four model. All together, these results highlight the importance

of continued advancements in the underlying scientific understanding of the impacts of climate

change on typhoons. Also, we recommend using a larger sample of simulated storms, as it is

possible that even with 3,000 tracks, we have not yet reached a law of large numbers allowing our

simulated sample to approach the true population.

Sensitivity Analysis Finally, we test the sensitivity of some of our model assumptions. For

parsimony, we present only the results for damages and fatalities. The results for injury, homeless,

and affected are similar to those of fatalities. Table 7 shows the sensitivity results across the

socioeconomic change impacts. Row 1 describes the future baseline percent change in damages

and fatalities dues to socioeconomic change. It represents a future state of the world consistent

with medium population projections from the United Nations and a constant 2 percent rate of

income growth. All other rows in the table should be compared to this one. Rows 2 through 6

vary the socioeconomic change assumption by instead using those of the Sustained Socioeconomic

Pathways (SSP). The SSP are storylines rather than projects used by the United Nations. Finally,

we test the sensitivity of the model in response to the model parameters by including the highest

and lowest values within the 95 percent confidence interval of the estimated elasticities of per

capita income and population density.

We find several important notes. First of all, damages experience a larger spread in estimated
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Table 7: Socioeconomic Impact Sensitivity

Damages Fatalities

Future Baseline 117.7% -67.8%
SSP 1 125.3% -75.2%
SSP 2 116.7% -72.4%
SSP 3 67.1% -58.0%
SSP 4 119.7% -74.7%
SSP 5 178.6% -81.1%

Income -95% -60.5% -87.6%
Income +95% 1125.5% -15.6%

Population -95% 7.7% -78.0%
Population +95% 349.1% -52.6%

impacts. This is likely due to the fact that fatalities is bounded by a 100 percent reduction in

lives lost, while the positive increases in damages are unbounded in theory. Thus, we see fatalities

results within approximately 20 percent of the future baseline figure, although fatalities are most

sensitive when the income elasticity increases, moving closer to zero. This weakens the protective

tendencies of development, leading to fewer fatalities avoided. Damages are sensitive to model

assumptions. The impact of the SSP 1, 2, and 4 assumptions are similar to the future baseline.

Damages increase the least in the SSP 3, where the future world is relatively poorer and more

populated. Damages are very sensitive to the income and population elasticities. Therefore, it

behooves future work to think carefully about these relationships and related assumptions.

Table 8: Climate Impact Sensitivity

Damages Damages Damages Damages Fatalities Fatalities Fatalities Fatalities

CNRM ECHAM GFDLCM MIROC CNRM ECHAM GFDLCM MIROC
Future Baseline 7.6% 7.2% -48.9% 2.1% 8.2% 4.1% -33.6% -10.1%

SSP 1 11.0% 3.3% -50.7% 4.4% 5.9% 9.4% -30.5% -14.0%
SSP 2 10.5% 3.5% -50.7% 4.1% 6.1% 8.6% -30.8% -13.5%
SSP 3 9.8% 4.7% -50.7% 3.7% 6.8% 6.8% -31.7% -12.4%
SSP 4 11.1% 4.0% -50.9% 4.1% 5.8% 8.6% -30.4% -13.8%
SSP 5 10.9% 3.0% -50.7% 4.6% 5.8% 9.7% -30.4% -14.1%

Income -95% 9.9% 6.0% -49.8% 3.0% 8.6% 3.7% -33.7% -9.8%
Income +95% 5.2% 8.5% -47.5% 1.2% 7.8% 4.5% -33.4% -10.5%

Population -95% 9.5% 6.8% -50.3% 2.2% 8.6% 3.8% -33.9% -9.8%
Population +95% 2.8% 8.1% -46.4% 1.7% 7.7% 4.5% -33.2% -10.6%

Pressure -95% 12.2% 6.4% -57.6% 9.6% 9.6% 3.4% -36.6% -7.5%
Pressure +95% 5.1% 8.4% -41.2% -4.5% 7.6% 5.0% -31.2% -12.3%

Lastly, we present the results of the climate impact sensitivity in Table 8. We employ the same
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tests as described above and apply them to both damages and fatalities across all four climate

models. We also add a test for the sensitivity of the estimated intensity elasticity. Overall,

we find the across-model sensitivity dominates the within-model sensitivity. This is logical for

the socioeconomic sensitivity tests, as we hold socioeconomic factors constant in this analysis.

Thus, the variation is driven by changes in the path of the storm leading to different types of

human communities being hit. While we found large sensitivity to the income and population for

socioeconomic damages, we do only find small aggregate-level sensitivity to the changes in the

intensity coefficient. Thus, socioeconomic variable elasticities as well as across-model agreement

are main areas of sensitivity in the model.

5 Conclusion

In this paper, we estimate the impact of climate and socioeconomic change on typhoon losses

in mainland China, Hong Kong, Macau, and Taiwan. To do so, we first extend the theoretical

framework based on Mendelsohn and Saher (2011). We then construct C-STORM, the China-

Specific Typhoon Outcomes integRated assessment Model. This model synthesizes the forefront of

natural science knowledge with economic valuation tools. Using simulated typhoon data generated

from the results of four climate models, we value the simulated losses using global valuation

functions for damages, fatalities, injury, homelessness, and number affected. We then characterize

spatially-explicit changes in landfall characteristics due to climate change and separately estimate

change in typhoon losses due to climate and socioeconomic change. We find that China is likely

to see fewer storms overall, but an increase in the strongest storms. Additionally, we find an

increase in future baseline damages by 118% due to socioeconomic change, while other losses are

expected to decrease due to increased protection from economic development. Overall, the long

term socioeconomic changes coupled with some disagreement across climate model output drive

loss changes.

There are important policy implications of this work. First, we must keep in mind that the

projected reductions in losses are not deterministic. They will not occur automatically but rather

highlight the potential for a century of economic growth coupled with efficient adaptation. Second,

they highlight the importance of public adaptation, as well as public leadership to educate the

general public about typhoon risks. Clear and credible advanced warning is important to prevent

unnecessary deaths. Lastly, it is important for governments to consider these long term changes

in underlying risk rates and the types of storms a specific location may face. With that said,

China is already hit frequently by storms each year, so adapting optimally to the current levels

of risk will help combat future risks as well.

This research leaves several directions for future work. First, a careful study of the costs

and benefits of various mechanisms to reduce fatality risks is important. This will better inform

and tailor evacuation and advanced warning messages for potential storm landfalls. Second, this
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study highlights the importance of continued advancements in scientific knowledge of climate

science, as there is still disagreement across model output. Third, the results here highlight the

importance of better damages data, including better understanding of how data collection may

vary across types of collection agencies. This will inform the extent to which results are driven

by measurement issues. Lastly, the impact of sea level rise was not included in this analysis and

is an important direction for future work.
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A Extended Results

In this section of the appendix, we present additional information and results relevant to the

analysis. Table 9 details the exact socioeconomic change assumptions used in the Sustained

Socioeconomic Pathways as well as the United Nations medium population projections and a

2 percent per capita income growth rate. We also include a high-population growth and 2.5

percent constant growth rate for comparison. We find it is important to carefully chose SSP

scenarios, as the domain across the five SSP scenarios is not always contained within the United

Nations and income change assumptions. For example, the SSP predict more convergent incomes,

leading to more than 1000 percent growth in income per capita in China coupled with only 50

percent increases in incomes in Macau over the next century. The SSP also predict faster rates

of population shrinking in China and Macau, relative to the United Nations projections. Thus,

researchers should think carefully about assumptions that fit their needs.

In Table 10, we present the results of the impact of climate change on average typhoon landfall

characteristics. These are identical to the results in Figure 7, but written out for ease of numerical
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interpretation. After presenting the results for damages and fatalities in the main body of the

paper, we include here the impact of climate change on regional typhoon injuries in Table 12,

homelessness in Table 13, and number affected in Table 14. The results are similar to those of

fatalities, with CNRM and ECHAM models dominating the predictions of regional increases in

typhoon losses, while GFDLCM and to a lesser extent the MIROC model forecasts net reductions

in impacts.
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Table 10: The Impact of Climate Change on Average Typhoon Landfall Characteristics

Location Frequency (%) Wind (%) Pressure (%)

Fujian -5.03 -1.21 0.04
Guangdong -2.65 -3.10 0.11

Guangxi -36.48 -2.20 -0.10
Hainan -11.78 0.14 0.01
Jiangsu -27.26 -6.52 0.04
Liaoning 15.16 2.48 -0.07
Shandong -16.91 9.36 -0.33
Shanghai 0.61 30.98 -0.95
Zhejiang -23.50 -10.23 0.41

HongKong -11.30 1.20 -0.04
Macau 2.54 2.76 -0.07
Taiwan 0.89 -6.32 0.27

Figure 12: Climate Change Impacts on Regional Typhoon Injuries, % Change
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Figure 13: Climate Change Impacts on Regional Typhoon Homeless, % Change

Figure 14: Climate Change Impacts on Regional Typhoon Affected, % Change
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B East Asia Results

In this section, we present the results of the analysis using a valuation function unique to East

Asia. We find qualitatively similar results as with the global model, except for damages. We

present the results from our East Asia-specific valuation functions in Table 11. The model set up

is identical to the global model in the body of the text, except the underlying sample is censored

to only include locations in East Asia, including China, Macau, Hong Kong, Taiwan, Japan, and

the Koreas. Thus, the sample size is reduced by 75 percent.

Table 11: Historical East Asia-Specific Impact Functions

(1) (2) (3) (4) (5)

VARIABLES Ln Damages Ln Fatalities Ln Injured Ln Homeless Ln Affected

Ln Income Per Capita -0.407** -0.521*** -0.776*** -0.791*** -1.214***
(0.174) (0.0868) (0.131) (0.290) (0.226)

Ln Population Density -0.919*** -0.367*** -0.0870 -0.583** -1.112***
(0.224) (0.0947) (0.119) (0.236) (0.216)

Ln Pressure -31.11*** -4.426 -20.10*** -10.66 3.143
(9.366) (5.011) (7.677) (14.48) (13.78)

Ln Distance -0.589*** -0.135*** -0.274*** -0.115 -0.379**
(0.106) (0.0503) (0.0873) (0.152) (0.180)

Constant 242.3*** 40.57 150.3*** 92.41 7.087
(64.76) (34.58) (52.87) (100.1) (95.13)

Observations 190 264 161 60 167
R-squared 0.260 0.229 0.259 0.302 0.336

Interestingly, we find qualitatively similar results for the cyclone elasticities, with a stronger

and closer storm leading to more losses. The only unexpected result is the pressure elasticity of

number affected, which is positive but not statistically different from zero. This could be due to

small sample size or measurement error. In fact, three of the five model pressure elasticities lack

statistical significance from zero. The socioeconomic elasticities are different. Similar to the main

result, the income elasticity is negative and statistically significant for fatalities, injury, homeless,

and affected, although the magnitude of the coefficients is larger, especially for affected. This

implies strong adaptive potential in East Asia, but could also be due to error in the underly-

ing data. Surprisingly, the income elasticity of damages is negative, implying that adaptation

completely washes out any scale effect from more in harm’s way. Unlike the global model, the

population density elasticity is negative and significant for all specifications excluding the injury

regression. We present the results for socioeconomic change on typhoon impacts in Figure 15 and

the socioeconomic sensitivity analysis in Figure 16. Lastly, we present results for the regional

impact of climate change in Figure 17. We use the world model as our main result, as the drivers
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of the East Asian results is still an open research question. It could be that East Asia is very

effective at adapting as it develops and thereby greatly reduces typhoon impacts. On the other

hand, since there is no systematic accounting scheme for disaster impact data collection, it is

possible that measurement error or even strategic reporting could be attenuating or even biasing,

respectively, the analysis results. Thus, we leave a detailed data collection study for future work.

Figure 15: Socioeconomic Change Impacts, % Change
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Figure 16: Socioeconomic Change Sensitivity Analysis, % Change
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Figure 17: Climate Change Impacts, % Change
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