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SUMMARY COSMO-CLM (or CCLM) is a non-hydrostatic parallel
atmospheric model, developed by the CLM-Community starting from the
Local Model (LM) of the German Weather Service. Since 2005, it is the
reference model used by the german researchers for the climate studies on
different temporal scales (from few to hundreds of years) with a spatial
resolution from 1 up to 50 kilometers. It is also used and developed from
other meteorological research centres belonging to the Consortium for
Small-scale Modelling (COSMO).
The present work is focused on the analysis of the CCLM model from the
computational point of view. The main aim is to verify if the model can be
optimised by means of an appropriate tuning of the input parameters, to
identify the performance bottlenecks and to suggest possible approaches
for a further code optimisation. We started analysing if the strong scalability
(which measures the improvement factor due to the parallelism given a
fixed domain size) can be improved acting on some parameters such as the
subdomain shape, the number of processes dedicated to the I/O
operations, the output frequency and the communication strategies. Then
we profiled the code to highlight the bottlenecks to the scalability and finally
we performed a detailed performance analysis of the main kernels using the
roofline model.
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INTRODUCTION

CCLM is a unified model, used for the Numer-
ical Weather Prediction and the modelling at
regional scale. Model equations are based on
rotated geographical coordinates and several
physical processes are modelled through dif-
ferent parameterisation schemes. The model
configuration can be set changing the following
configuration files:

INPUT ORG for Setup;

INPUT IO for I/O;

INPUT DYN for Dynamics;

INPUT PHY for Phisics;

INPUT DIA for Diagnostics;

INPUT ASS for Data Assimilation;

INPUT INI for Data Initialization.

The main goal of the present work was the per-
formance analysis of the model. It involved
some groups of parameters such as:

/LMGRID/ which allows to select the do-
main size and its decomposition;

/RUNCTL/ which allows to select the ex-
ecution parameters;

/TUNING/ which allows to select the tun-
ing variables;

/IOCTL/ and /GRIBOUT/ which allow to
control the I/O parameters.

More details about the available parameters
can be found in the COSMO user’s guide [2].
The CCLM test configuration taken into consid-
eration covers the region shown in figure 1 cor-
responding to the alpine region (780 · 460km2) ,
with a 2 km resolution.

Figure 1:
CCLM test configuration

ANALYSIS OF SCALABILITY

The aim of the analysis is to verify the strong
scalability of the model. A set of 4 runs (on 16,
64, 512 and 2048 cores) has been executed on
ATHENA, the iDataPlex cluster with Intel Xeon
E5-2670 Sandy Bridge processors, available
at CMCC. The analysis has been performed
acting on different factors which can influence
the performance: the domain decomposition,
the resources dedicated to the I/O operations,
the communication strategies and the I/O fre-
quency. Moreover, the kernel’s scalability has
been analyzed in detail.

DOMAIN DECOMPOSITION In this first analy-
sis we have verified if and how the shape of the
subdomain impacts on the computational per-
formance of the model. Three different domain
decompositions have been considered, chang-
ing the number of processes along the longi-
tude and the latitude directions:

Squared subdomains

Longitudinal bands

Latitudinal bands

Let PI/O be the number of processes dedicated
to I/O operations, Px and Py respectively the
number of processes along the longitude and
the latitude axis. The total number of processes
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( Nproc) will be given by:

Nproc = PxPy + PI/O (1)

Since we are interested only to analyse the im-
pact of different subdomain shapes, we can set
PI/O = 0. The longitudinal or latitudinal bands
subdomains are easily obtained setting respec-
tively Px or Py to 1. While, to obtain square sub-
domains, we have to choose Px and Py such
that

Gx

Px
=
Gy

Py
(2)

where Gx and Gy are the number of grid points
respectively along the longitude and the latitude
axis, with the following constraints:

Px ∈ N, Py ∈ N

Px|Nproc, Py|Nproc

(3)

A rule of thumb for guessing a first approxima-
tion of Px or Py values is given by equations 4
and 5

Py =

⌊√
Gy

Gx
Nproc+ 0, 5

⌋
(4)

Px =

⌊
Nproc

Py

⌋
(5)

In our test case, Gx and Gy, defined into the
/LMGRID/ group of the INPUT ORG file, are
respectively 390 and 230. Due to the rounding,
the subdomain could be not exactly square; a
form factor (φ) has been introduced to verify
the ratio between the two dimensions of the
subdomain. Four different decompositions
have been considered as listed below:

CASE 1: Nproc = 15

Px = 5 and Py = 3

φ = 1.02

CASE 2: Nproc = 60

Px = 10 and Py = 6

φ = 1.02

CASE 3: Nproc = 510

Px = 30 and Py = 17

φ = 1.04

CASE 4: Nproc = 2030

Px = 58 and Py = 35

φ = 1.02

The first two cases have been considered for
applying the longitudinal and the latitudinal
bands decomposition, fixing the total number
of processes. In particular, for the longitudinal
bands decomposition:

CASE 1: Nproc = 15

Px = 1 and Py = 15

CASE 2: Nproc = 60

Px = 1 and Py = 60

while, for the latitudinal one:

CASE 1: Nproc = 15

Px = 15 and Py = 1

CASE 2: Nproc = 60

Px = 60 and Py = 1

Figure 2 reports the execution time when the
number of core increases, considering the
three domain decomposition strategies. The
best one is the square decomposition, which
minimises the communication time. Indeed, a
block decomposition strategy doubles the num-
ber of communications w.r.t. the bands decom-
position, but the messages length decreases
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when the number of the processes increases.
When it becomes very high, the length of the
messages is too short that the block strategy
is usually the best one. Moreover, the square
decomposition is the best block decomposition
because it minimises the perimeter of the sub-
domain, then the messages length.

Figure 2:
Scalability analysis with different domain decomposition

strategies. The blue line refers to the square domain,
while the red and the green lines respectively to the

horizontal and the vertical bands decomposition.

I/O RESOURCES In this analysis we are inter-
ested to verify the impact of the cores dedi-
cated to the I/O operations on the computa-
tional performance. In this case we have fixed
the decomposition strategy using square sub-
domains and changed the number of processes
reserved for I/O. Four different cases have been
considered as listed below:

CASE 1: PI/O = 4

a) Nproc = 16 Px = 4 Py = 3 φ = 1.27

b) Nproc = 64 Px = 10 Py = 6 φ = 1.02

c) Nproc = 497 Px = 29 Py = 17 φ = 1.006

d) Nproc = 2034 Px = 58 Py = 35 φ = 1.02

CASE 2: PI/O = 16

a) Nproc = 61 Px = 9 Py = 5 φ = 1.06

b) Nproc = 509 Px = 29 Py = 17 φ = 1.006

c) Nproc = 2046 Px = 58 Py = 35 φ = 1.02

CASE 3: PI/O = 64

a) Nproc = 512 Px = 28 Py = 16 φ = 1.03

b) Nproc = 2036 Px = 58 Py = 34 φ = 1.006

CASE 4: PI/O = 128

a) Nproc = 428 Px = 25 Py = 12 φ = 1.23

b) Nproc = 2032 Px = 56 Py = 34 φ = 1.03

Figure 3 reports the scalability curves for the
four cases. As we can note, dedicating cores
only for I/O does not bring benefits.

Figure 3:
Scalability analysis with different I/O resources: blue line
for 4 cores, red line for 16 cores, green line for 64 cores

and purple line for 128 cores.

COMMUNICATIONS The scalability has been
evaluated also changing the communications
strategy (fixing the square domain decompo-
sition). The ncomm type parameter allows to
select one of the following communications:

1. Immediate send: begins a nonblocking
send;
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2. Immediate receive: begins a nonblocking
receive;

3. Send-receive: combines in one call the
sending of a message to one destination
and the receiving of another message,
from another process. The two processes
can be the same.

Results are shown in figure 4. As we can note,
the choice of different communication strate-
gies does not affect the performance.

Figure 4:
Scalability analysis with different communication

strategies: the green line refers to immediate send, the
red line to immediate receive and the blue line to

send-receive.

I/O FREQUENCY The objective was to anal-
yse the performance changing the I/O fre-
quency. In the /GRIBOUT/ group, the hcombper
parameters indicate the start and end time and
the intervals for the output writing. The follow-
ing cases have been considered:

CASE 1: The file is written once at the end of
the run.
CASE 2: The file is written two times.
CASE 3: The file is written four times.

Figure 5 shows a comparison among the three

cases. Starting from the results of the analy-
sis carried out changing the dedicated I/O re-
sources and the last test on the I/O frequency,
we can deduce that I/O does not represent a
bottleneck for the CCLM scalability.

Figure 5:
Scalability analysis changing the I/O frequency: blue line
for case 1, red line for case 2 and green line for case 3.

KERNEL’S SCALABILITY The last analysis
has been conducted at kernels level. Figures 6
reports the wall-clock time of the fundamental
operations (communication, I/O, physics, and
dynamics computation) executed in the main
kernels (the most expensive ones). Figure 7
reports the I/O, physics and dynamic compu-
tation speed-up compared with the ideal trend.
The data have been collected from the YUTIM-
ING file created at runtime. The I/O time did
not scale with the number of processes since,
for these tests, the number of I/O nodes has
been kept constant. Figures 8 and 9 report a
detailed analysis of the main kernels in terms
of execution time and speed-up. Some kernels
have a strange behaviour with a super-linear
speed-up on 2048 cores and requires a more
detailed analysis.
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Figure 6:
Execution time of the main kernels grouped by the operation type.

Figure 7:
Speed-up of the main kernels grouped by the operation type.
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Figure 8:
Execution time of the main kernels.

Figure 9:
Speed-up of the main kernels.



08

C
en

tr
o

E
ur

o-
M

ed
ite

rr
an

eo
su

iC
am

bi
am

en
ti

C
lim

at
ic

i

CMCC Research Papers

PROFILING

The code profiling is an important step for the
performance analysis of a model since it allows
to trace the call tree and to identify the most
expensive routines (the bottlenecks during the
code execution). We used the gprof tool to
profile the code.
Tables 1 and 2 show the analysis results filtered
on the most expensive functions. In particular,
for each of these, tables 1 and 2 report:

the percentage on the total execution time

the total time spent by the current function

the number of times the routine is called

Figure 10:
Distribution of routines execution time activating compiler

optimisation.

the time spent for each call

the function name

respectively with and without the O3 optimisa-
tion flag. The total execution time was reduced
of about 82% just acting at compile time on the
optimisation flag.
The reduction can be differently appreciated
on the main routines (i.e. after the optimisa-
tion, the percentage of the advection routine
increases compared with the other ones).
Figures 10 and 11 show the routines execution
time with and without activating the compiler
optimisation.

Figure 11:
Distribution of routines execution time without activating

compiler optimisation.
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Table 1
Gprof results: main kernels profiling activating compiler optimisation.

% time (self) self seconds calls self s/call name
28.59 194.85 12963 0.015031243 fast waves rk mp fast waves runge kutta
8.82 46.2 12963 0.00356399 src slow tendencies rk mp complete tendencies uvwtpp
6.43 44.78 4321 0.010363342 src turbdiff mp turbdiff
5.20 35.30 4321 0.008169405 src gscp mp hydci pp
4.01 25.86 25926 0.000997454 numeric utilities rk mp zadv pd rk bott
3.62 19.59 4321 0.004533673 src runge kutta mp org runge kutta
3.46 18.88 1037040 1.82057E-05 numeric utilities rk mp yadv pd rk bott
2.82 18.84 1037040 1.81671E-05 numeric utilities rk mp xadv pd rk bott
1.79 14.06 12963 0.001084625 src advection rk mp advection
1.66 12.57 4321 0.002909049 src slow tendencies rk mp implicit vert diffusion uvwt
1.53 9.26 4321 0.002143022 src slow tendencies rk mp complete tendencies qvqcqi tke
1.46 8.29 518480 1.5989E-05 meteo utilities mp satad
1.33 7.23 4321 0.001673224 src soil multlay mp terra multlay
1.28 6.22 4321 0.001439482 src slow tendencies rk mp complete tendencies init

Table 2
Gprof results: main kernels profiling without activating compiler optimisation.

% time (self) self seconds calls self s/call name
25.36 983.90 12963 0.07590064 fast waves rk mp fast waves runge kutta
9.03 350.19 12963 0.02701458 src slow tendencies rk mp complete tendencies uvwtpp
7.91 306.74 4321 0.070988197 src turbdiff mp turbdiff
4.90 190.02 12963 0.014658644 src advection rk mp advection
4.81 186.48 25926 0.007192779 numeric utilities rk mp zadv pd rk bott
4.30 166.67 4321 0.03857209 src gscp mp hydci pp
3.85 149.30 82099 0.001818536 src advection rk mp adv upwind3 lat
3.85 149.20 82099 0.001817318 src advection rk mp adv upwind3 lon
2.96 114.96 1037040 0.000110854 numeric utilities rk mp xadv pd rk bott
2.96 114.65 1037040 0.000110555 numeric utilities rk mp yadv pd rk bott
2.79 108.43 4321 0.025093728 src runge kutta mp org runge kutta
2.59 100.49 67200 0.001495387 src radiation mp inv th
2.31 89.76 4321 0.020772969 src slow tendencies rk mp implicit vert diffusion uvwt
1.73 67.10 4321 0.015528813 src relaxation mp sardass
1.62 62.90 4321 0.014556816 src slow tendencies rk mp complete tendencies qvqcqi tke
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PERFORMANCE ANALYSIS

The qualitative analysis of the model perfor-
mance has been carried out using Paraver [1],
a tool for the performance analysis which al-
lows to understand the behaviour of an ap-
plication through a visual inspection. Paraver
has been used to evaluate the communications
weight and the load balancing. It allows to
trace the most relevant performance indicators
during the job execution and provides several
views to analyse the trace. The performance
indicators can be shown in two ways:

Timeline Display - to visualise the tem-
poral evolution of a performance indicator
during the execution of the application (a
line for each process)

Statistic Display - to perform a statistical
analysis along a group of processes, a
time window or a kind of indicators

Both the views can be applied to a time window
or to a group of processes selected by the user,
to better focus the analysis. For example, our
test have been executed on 256 processes, but
only the first 32 processes have been reported
in the figures.
Figure 12 and 13 report a timeline display of
the trace for the CCLM model. Most of the
execution time is dedicated to communications
(orange lines in figure 12). Using the filters
provided by the tool, the running (blue) and the
idle (light blue) states have been highlighted
(figure 13). Moreover, a zoom on the paraver
trace can be done to better capture the status
changes (figure 14). For the statistic analysis,
the histogram utility has been used giving a
numerical report of the filtered trace. Figure 15
reports the idle and running time for each
process; the ratio between the running and
the total time gives an estimation on how
efficiently the computational cores have been

used. Considering the average time over all
the processes, we have an efficiency of 25%.
Figure 16 reports the statistic information
along all of the processes. Considering the
ration between the average and the maximum
value, we can have an estimation of the load
balancing among the processes.

Figure 12:
Paraver tracer highlighting the different events at runtime.

Figure 13:
Paraver tracer highlighting the comparison between the

running time and the idle time.

ROOFLINE MODEL

The roofline model [3] allows to measure and
compare the performance of one or more com-
putational kernels executed on different hard-
ware architectures. It aims at providing an in-
sight into the performance on many core archi-
tecture; it does not need to be a perfect perfor-
mance model but just insightful. The basic idea
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Figure 15:
Histogram related to the zoomed paraver tracer.

Figure 16:
Statistic values related to the paraver tracer.

Figure 14:
Zoom on the paraver tracer highlighting the comparison

between the running time and the idle time.

behind the roofline model is that an application
is limited by two main factors: the peak floating
point operations per seconds and the maximum
memory bandwidth required to execute a given
number of operations per seconds. Hence, to
build the roofline model the following charac-
teristics of the architecture must be taken into
account:

max Floating Point Operations per sec-
ond;

max Memory Bandwidth.

The first is the maximum number of floating
point operations that a core can execute and
often, for multicore chips, it is evaluated as the
collective peak performance of all the cores on
the chip. The second number refers to the Max
Memory Bandwidth (MMB) of the architecture,
i.e. the maximum speed at which you can trans-
fer the data from/to the memory.
The other data we need are related to the com-
putational kernel that we want to evaluate. First
of all we need the total number of floating point
operations performed by the kernel during a
run, measured in GFlops. Another important
factor to take into account is the Arithmetic
Intensity (AI), which is the number of floating
point operations performed per byte transferred
to/from the memory. It is measured in (Floating
Point Operations)/Byte and it can be considered
as a measure of the density of all floating-point
operations performed related to the total num-
ber of bytes of data transferred from DRAM.
The objective of our analysis was the classi-
fication of the most expensive routines using
the roofline model. To collect the number of
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Flops and the number of byte trasferred from
the DRAM we used the hardware counters by
means of the PAPI library. Actually, since the
counter for the data volume transferred to/form
the DRAM is not available on the architecture,
we used the number of last level cache misses
counter considering that for each cache miss a
transfer of a cache line occurs. On the Athena
cluster the cache line is 64 byte wide. We mea-
sured the flops and the last level cache misses
for each routine instrumenting the code with the
following PAPI calls:

flops counting start;

flops counting stop;

cache misses counting start;

cache misses counting stop.

For each routine, the flops of the process hav-
ing the highest elapsed time have been con-
sidered, while the cache misses have been
extracted from the first occurrence of the rou-
tine executed by the process with the highest
elapsed time. The following routines have been
considered:

fast waves runge kutta

complete tendencies uvwtpp

implicit vert diffusion uvwt

complete tendencies qwqcqi tke

org runge kutta

Starting from the flops and the cache misses
values, we can define the Arithmetic Intensity
and the Gflops for each routine and hence place
it on the roofline chart. The coordinates of the
points representing the routines into the roofline
model can be evaluated as follows:

x =
Flops

Byte
=

Flops

CacheMisses ∗ 64
(6)

y =
GFlops

Sec
(7)

Table 3 shows the collected data, while the
graph locates the analysed routines into the
roofline model (figure 17).
The three routines at the left of the ridge point
cannot be improved over a given threshold due
to the bandwidth limit, while a solution could be
to increase the AI to get them as close as pos-
sible to the ridge point. For the routines at the
right of the ridge point, since they are located
under the "no vectorisation" line, their vectori-
sation should be improved to better exploit the
SSE or AVX1 instruction sets and to decrease
the Floating Point operations execution time.
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Table 3
Data collected to trace the roofline model.

Routine Cache misses Flops Elapsed time
fast waves runge kutta 19530 546864393 0.215878
complete tendencies uvwtpp 22477 1893552 0.061917
implicit vert diffusion uvwt 8753 1802797 0.068709
complete tendencies qvqcqi tke 17930 1788636 0.075288
org runge kutta 308196 743732162 0.839186

Figure 17:
Roofline model for the main CCLM kernels.
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