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1. INTRODUCTION 
As also mentioned in the latest IPCC 5th assessment report (IPCC, 2014), the 

econometric or statistical approach is one consolidated methodology used by 

economics to estimate both the economic consequences of climate change and to 

evaluate adaptation options (Heal et al. 2014). These approaches have been mostly 

applied to analyze climate change impacts in agriculture (Lobell & Burke, 2010, 

Schlenker and Roberts 2009) and responses of energy demand patterns 

(Auffhammer Mansur 2012, Barreca 2012, De Cian et al. 2013, Deschenes and 

Greenstone 2011).  

Another vastly applied methodology to study the effects of climate change 

impacts and policies is model-simulation based analysis. However this approach, 

which is based on the explicit representation of the main behavioral or systemic 

features of the phenomenon analyzed, is extremely data intensive, and often cannot 

be pursued. Just to give an example think to a modelling approach to hydro-power 

generation responses to changes in average meteorological variables as well as in 

extreme events. Many different generation units are involved and for each the main 

“functioning” characteristics need to be specified. Likely they will all display a 

different sensitivity depending for instance on water reservoir characteristics (run-of-

river versus dams with large storage reservoirs), the storage capacity, as well as the 

alternative (and competitive) uses for water in the area where they are located, and 

so on. Therefore the volume (and quality) of data is often an impediment to conduct 

such assessments on the large scale. Alternatively, when they are performed on the 

large scale, input and output information are highly aggregated and the spatial 

specificities are often lost.  

Econometric approaches, on the contrary, do not try to describe all the 

mechanisms involved, but rather to identify robust relationships between the climate 

stressors and the endpoint of interest. In this sense, the data requirement is more 

limited, which makes these approaches easier to apply to broader scales.  
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The approach of combining statistical models for exploring a given system’s 

sensitivity with scenario-based analysis of exposure has a large, yet unexplored 

potential. This is being amplified by the recently increasing number of spatially 

resolved data products becoming available referring to main climate change and 

environmental variables. The re-analysis of these data could allow the application of 

statistical/econometric approaches to get at a time information at the global scale, 

and, by determining geographically-scaled indicators to stratify the information, to 

get insights preserving the spatial relevant heterogeneity. In principle this 

methodology can be easily applied to different sectors, time, and countries. 

Moreover statistical models can also accommodate variables accounting for the role 

of adaptive capacity. A number of papers under publication in a Special Issue in 

Energy Economics2 have identified some of the key areas where significant 

progress could be made.   

The remaining of this document illustrates the potential of using empirical 

approaches, combined with spatial data and future climate projections, in the 

analysis of climate impacts on crops’ productivity and energy demand , and 

adaptation, with a focus on China.  

 

2. GENERAL METHODOLOGY 
The empirical literature on climate change impacts has used mostly three 

different types of statistical models: cross-sections, time-series, and panel models.  

Cross-section models are based on the comparison of locations across space, and, 

in doing so, are able to implicitly capture the effect of adaptation strategies to 

different climates. In particular, albeit being based on one-point-in-time 

observations, they typically rely upon “between country” variations where climatic 

differences across observation units enable to capture the potential role of 

adaptation in the long term.  Differently, time-series models examine the response 

to weather shocks, examining how this varied in time in a specific “location” that can 

                                                             
2 Doi: 10.1016/j.eneco.2014.04.014 
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be a site or a country. Panel data models are somewhat in between: they are based 

on the observation of different units across time. In particular, fixed-effect panel 

models, which rely on the within variation, are closer to time-series models. 

However, in addition to the inter-annual variation they also capture the  differences 

in average climate conditions across different locations allowing the estimation of a 

site-specific (constant) term. This term, that basically “shifts” the estimated 

relationship, captures how much the climate effect in each site differs from the 

group mean. A further  advantage of panel data models is that they can control for 

differences in unobservable factors that are unit specific and constant over time 

(e.g. long-term average climate). 

The present exercise uses a panel regression model to estimate the parameters 

characterizing a reduced-form relationship between the selected impact endpoint at 

country level (in the specific case, crops productivity and energy demand), a set of 

meteorological indicators, and a number of other covariates controlling for time-

invariant country-specific heterogeneity (country effect), unspecified exogenous 

influences affecting all countries and units (time effects), and other confounding 

factors (such e.g. the electricity generation mix in the case of energy demand). 

Equation (1) offer a general representation of the model specification: the 

relationship of interest is (F), which specifies how a vector of meteorological 

variables (Mi,t) affects the impact endpoint (Yi,t): 

 
𝑌𝑌𝑖,𝑡 = 𝜇𝜇𝑖 + 𝜏𝜏𝑡 + 𝐹𝐹�𝑀𝑀𝑖,𝑡� + 𝑍𝑍𝑖,𝑡𝛾𝛾 + 𝜀𝜀𝑖,𝑡     (1) 
 
(𝛍𝐢) is the time-invariant individual heterogeneity, (𝛕𝐭) is the unspecified 

exogenous influences affecting all units, (𝐙𝐢,𝐭) other confounding factors, and 𝛆𝐢,𝐭 a 

random disturbance term. The coefficients in model (1) are identified from the inter-

annual variations and therefore they represent the short-term response to annual 

variation in the meteorological indicators considered. The model needs to be 

specified in a slightly different form to take into account long-term effects.  
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The methodology is used to estimate two sets of response functions, those 

related to: 

1. Rice, Wheat, Maize, and Sorghum  productivity; 

2. Sectoral energy demand; 

The set of confounding factors include real per capita GDP in the model for crop 

productivity and energy demand, because we found there is a long-term relationship 

of cointegration between yields and real per capita GDP on the one hand, and 

energy demand and real per capita GDP on the other hand. The empirical model 

used for the estimation of the response function of agriculture and energy demand 

is then specified in an “error correction model” (ECM) form, which enables the 

estimate of both short- and long-run elasticities.  
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3. DATA 
The novelty of the methodology is the use of various spatial datasets to stratify 

the gridded meteorological data from reanalysis datasets. In this way we are able to 

stratify the climate variables and identify the spatial heterogeneity that is relevant to 

each sector. In the case of agriculture we combined the climate data with a mask of 

the spatial distribution of harvested area by crop type and irrigation regime 

(Portmann et al. 2010), and with a dataset providing the growing season for each 

crop (Sacks et al. 2010), in each grid cell.  For the spatially-relevant grid cells to 

impact endpoint considered - in the case of agriculture the grid cells where crops 

are grown - we computed the annual distribution of daily temperature and 

precipitation during the growing season. The meteorological variables used in the 

empirical model are the count of day of exposure to hot days (defined as number of 

days with daily mean temperature above 27.5°C) , wet and dry days (defined as 

number of days with daily mean precipitation above 15mm/day or below 5mm/day). 

A similar approach is used to spatially identify the relevant grid cells for the 

domain of energy demand. In the case of energy demand the spatial attribute usd is 

population density by grid cell. The relevant variables here are exposure to cold and 

hot days, as well as to dry and humid days.   

Although the input historical climate data are defined on a daily basis and at the 

grid cell level, the meteorological variables stratified and computed as just 

described are ultimately aggregated to country level, which is the scale at which the 

econometric model is estimated. This is also the resolution of the dependent 

variables. In the study of agriculture, the dependent variable is crop yield defined at 

the national scale, on a yearly base. In the case of energy demand we used 

sectoral final energy use. Data sources of all date used are summarized in Table 1.  

 



China’s coastal zone vulnerability to climate change: impacts and economic assessment  
 

07 
 
 

C
en

tr
o 

Eu
ro

-M
ed

ite
rr

an
eo

 s
ui

 C
am

bi
am

en
ti 

C
lim

at
ic

i 

Crop gridded 
harvest area 

Portmann, F. T., Siebert, S., and Doll, P. MIRCA2000Global monthly 
irrigated and rain-fed crop areas around the year 2000: A new high-
resolution data set for agricultural and hydrological modeling. Global 

Biogeochemical Cycles 24, 1 (2010). 

Crop calendar 
data 

Sacks, W. J., Deryng, D., Foley, J. a., and Ramankutty, N. Crop 
planting dates: an analysis of global patterns. Global Ecology and 

Biogeography 19, 607-62 (2010). 

Yields Food and Agriculture Organization of the United Nations (FAO), FAO 
Statistical Databases; available at http://faostat.fao.org (2013). 

Gridded 
population 

Center for International Earth Science Information Network - CIESIN - 
Columbia University, International Food Policy Research Institute - 

IFPRI, The World Bank, and Centro Internacional de Agricultura 
Tropical - CIAT. 2011. Global Rural-Urban Mapping Project, Version 1 

(GRUMPv1): Population Count Grid. Palisades, NY: NASA 
Socioeconomic Data and Applications Center (SEDAC). 

http://sedac.ciesin.columbia.edu/data/set/grump-v1-population-count. 

Climate historical 
data 

Compo, G.P. et al. The Twentieth Century Reanalysis Project. 
Quarterly Journal of the Royal Meteorological Society 137, 1-28 (2011). 

Rodell, M., Houser, P. R., Jambor, U., Gottschalck, J., Mitchell, K., 
Meng, C.-J., … Toll, D. (2004). The Global Land Data Assimilation 
System (GLDAS). Bulletin of the American Meteorological Society, 

85(3), 381–394. doi:10.1175/BAMS-85-3-381 

Future climate 
projections 

Climate models used for the design of future climate change 
projections. All data was accessed from the http://pcmdi9.llnl.gov/esgf-

web-fe/between June 1st and August 31st, 2013. Models used: 
CCSM4, CNRM-CM5, GFDL-CM3, MIROC5, MPI-ESM-MR 

GDP 
Heston, A., Summers, R., and Atenm, B. Penn World Table Version 7.1 
Center for International Comparisons of Production, Income and Prices 

at the University of Pennsylvania (2013). 

Energy demand 
data International Energy Agency (IEA) database3 

Table 1: Spatial dataset used to stratify climate variables by sector 

  

 

                                                             
3 Accessed on November 2012. 

http://pcmdi9.llnl.gov/esgf-web-fe/
http://pcmdi9.llnl.gov/esgf-web-fe/
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4. EMPIRICAL MODELS  
The two sets of response functions are estimated using national annual data for 

different sized-panel datasets, depending on the case considered.  Here we 

summarize the specific empirical model estimated in each case, while details are 

described in dedicated papers under preparation4.  

MODEL 1.  AGRICULTURE 
In the specific case of agriculture the general framework introduced in Eq. (1)  

reads as follows: 

𝐘𝐢,𝐭: 𝐲𝐢,𝐭, yield (ton/hectare) 

𝐌𝐢,𝐭: 𝐃𝐓𝐢,𝐭𝐤 , 𝐃𝐏𝐢,𝐭
𝐣  

𝐅[ ]: 𝚺 

𝐙𝐢,𝐭 : real GDP per capita 

 

𝚫 𝐥𝐧 𝐲𝐢,𝐭 = 𝛂𝐢 + 𝚫𝐙𝐢,𝐭𝛈 + ∑ ∑ 𝛃𝟏
𝐤,𝐦𝚫𝐓𝐢,𝐭

𝐤,𝐦
𝐦

𝐊
𝐤=𝟏 + ∑ ∑ 𝛃𝟐

𝐣,𝐦𝚫𝐏𝐢,𝐭
𝐣,𝐦

𝐦
𝐉
𝐣=𝟏   

 +𝛄�𝐥𝐧 𝐲𝐢,𝐭−𝟏 − 𝐙𝐢,𝐭−𝟏𝛌 − ∑ ∑ 𝛉𝟏
𝐤,𝐦𝐓𝐢,𝐭−𝟏

𝐤,𝐦
𝐦

𝐊
𝐤=𝟏 − ∑ ∑ 𝛉𝟐

𝐣,𝐦𝐏𝐢,𝐭−𝟏
𝐣,𝐦

𝐦
𝐉
𝐣=𝟏 � + 𝛆𝐢,𝐭 (2) 

𝐲𝐢,𝐭 indicates the yield of rice, wheat, maize, and sorghum in country 𝐢 and year 𝐭. 
The weather variables 𝐓𝐢,𝐭

𝐤,𝐦 and 𝐏𝐢,𝐭
𝐣,𝐦 are annual counts of growing season days with 

average temperature in interval 𝐤 and precipitation in interval 𝐣 in areas with 
irrigated or rain-fed management regimes, 𝐦.  The count of days of exposure to k 
temperature and j precipitation range in country i in year t is weighted with the share 
of harvested area by management type (Portmann et al. 2010):  
 

𝑇𝑐𝑒𝑙𝑙𝜖𝑖,𝐶
𝑘,𝑚 = ∑ 𝑇𝑐𝑒𝑙𝑙𝜖𝑖,𝐶

𝑘,𝑚
𝑐∈𝑖 ∗

ℎ𝑎𝑚𝑗,𝑐𝑒𝑙𝑙𝜖𝑖,2000

∑ ℎ𝑎𝑚𝑗,𝑐𝑒𝑙𝑙𝜖𝑖,2000𝑗
  

                                                             
4 De Cian E. and Sue Wing  I. (2014)  “Climate change impacts on energy demand”, CMCC Research paper  
RP0240 and www.sisclima.it/wp-content/uploads/2013/10/SISC_Conference_Proceedings.pdf 

http://www.cmcc.it/publications/rp0240-climate-change-impacts-on-energy-demand
http://www.cmcc.it/publications/rp0240-climate-change-impacts-on-energy-demand
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𝐙 is a vector of socio-economic variables (real per capita gross domestic product) 
which control for the potentially confounding effects of unobserved historical 
adaptations to changing climate and weather.  On the right-hand side, 𝛂𝐢 is a 
country-specific intercept that captures the influence on yields of unobserved 
heterogeneous time-invariant factors, the 𝚫 terms capture the short-run effects of 
inter-annual shocks, the lagged effect of the deviation from the long-run equilibrium 
relationship between crop yield and meteorology is given in square brackets, and 
𝛆𝐢,𝐭 is a random disturbance term. The error-correction speed of adjustment 
parameter, 𝛄, measures countries’ average rate of adjustment toward long-run 
equilibrium. The yield response to weather is indicated by the vectors of short-run 
semi-elasticity parameters 𝛃𝟏 and 𝛃𝟐, and to climate by the vectors of long-run 
semi-elasticity parameters 𝛉𝟏 and 𝛉𝟐. The long-run response is the cumulative 
effect during the adjustment period until the system returns to the long-run 
equilibrium and is computed using the long-term elasticities, 𝛉𝟏/−𝛄 and 𝛉𝟐/−𝛄.  
 

MODEL 2. ENERGY DEMAND 
In the specific case of energy demand the general framework introduced in Eq. 

(1)  reads as follows: 

𝐘𝐢,𝐭:𝐪𝐢,𝐭, per capita energy (Ktoe), 𝐐𝐢,𝐭
𝐏𝐎𝐏𝐢,𝐭

 

𝐌𝐢,𝐭: 𝐃𝐓𝐢,𝐭𝐤 , 𝐃𝐇𝐢,𝐭
𝐣  

𝐅[ ]: 𝚺 

𝐙𝐢,𝐭: real GDP per capita 

𝚫 𝐥𝐧𝐪𝐢,𝐭 = 𝛂𝐢 + 𝚫𝐙𝐢,𝐭𝛈 + �𝛃𝟏𝐤𝚫𝐓𝐢,𝐭𝐤
𝐊

𝐤=𝟏

+ �𝛃𝟐
𝐣 𝚫𝐒𝐇𝐢,𝐭

𝐣
𝐉

𝐣=𝟏

 

+𝛄�𝐥𝐧𝐪𝐢,𝐭−𝟏 − 𝐙𝐢,𝐭−𝟏𝛌 − ∑ 𝛉𝟏𝐤𝐓𝐢,𝐭−𝟏𝐤𝐊
𝐤=𝟏 − ∑ 𝛉𝟐

𝐣 𝐒𝐇𝐢,𝐭−𝟏
𝐣𝐉

𝐣=𝟏 � + 𝛆𝐢,𝐭  (3) 
 

Here, 𝐪𝐢,𝐭 indicates the sectoral energy demand in country 𝐢 and year 𝐭. The 

meteorological variables 𝐓𝐢,𝐭
𝐤,𝐦 and 𝐒𝐇𝐢,𝐭

𝐣,𝐦 are annual counts of days with average 

temperature in interval 𝐤 and specific humidity in interval 𝐣.  The count of days of 
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exposure to k temperature range in country i in year t is computed as the weighted 

sum of days of exposure to k temperature range in the grid cell c belonging to 

country i:  

𝐓𝐢,𝐭𝐤 = ∑ 𝐓𝐜𝐞𝐥𝐥∈𝐢,𝐭𝐤
𝐜𝐞𝐥𝐥∈𝐢 ∗ 𝐏𝐎𝐏𝐜,𝐢,𝟐𝟎𝟎𝟎

𝐏𝐎𝐏𝐢,𝟐𝟎𝟎𝟎
= ∑ 𝐓𝐜𝐞𝐥𝐥∈𝐢,𝐭𝐤

𝐜∈𝐢 ∗ 𝛚𝐜𝐞𝐥𝐥∈𝐢,𝟐𝟎𝟎𝟎  

The control variable, in this case real per capita gross domestic product, controls for 

the effects of potentially confounding historical factors. A country-specific intercept, 

𝛂𝐢,  captures the influence on energy demand of unobserved heterogeneous time-

invariant factors and 𝛆𝐢,𝐭 is a random disturbance term. The error-correction speed of 

adjustment parameter, 𝛄, measures countries’ average rate of adjustment toward 

the long-run equilibrium. The beta coefficients capture the short-run effects of inter-

annual shocks, while the theta ones capture lagged feedback of the disequilibrium 

into the change in energy demand. The long-run response is the cumulative effect 

during the adjustment period until the system returns to the long-run equilibrium and 

is computed using the long-term elasticities, 𝛉𝟏/−𝛄 and 𝛉𝟐/−𝛄.  
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5. EMPIRICAL RESULTS 
Table 2 and 3 summarize the estimated elasticities of the impact endpoint 

considered (cereal productivity and energy demand) to climate variables using 

historical data. The details of the estimation are described in dedicated papers5. 

Here we only discuss the response functions that are used to compute the future 

impacts. Moreover, here we illustrate the potential impact of climate change, without 

considering the potential interaction with economic growth.  

Table 2 shows the sensitivity of cereals to dry, wet, and hot days by region and 

management system. The effect of temperature is always negative for rain-fed 

crops whereas it is smaller or even positive for irrigated crops. The effect of high 

precipitation can be positive in tropical areas for maize and rice, which grow under 

average high precipitation conditions, whereas it is negative for wheat. 

Table 3 highlights the heterogeneity in the demand of the different energy 

vectors (electricity, oil products and gas) in the different sectors (agriculture, 

commercial, industry and residential) in  response to an increase in frequency of 

cold days (heating effect) and to an increase in frequency in hot days (cooling 

effect). Electricity handles virtually the entire cooling load, whereas the heating load 

is distributed among a wider range of fuels (natural gas and fuel oil). Our results in 

fact show that the cooling effect, which is observed in the sector of electricity, is 

stronger in temperate regions in residential and commercial sectors. The heating 

effect is found to be stronger for fuel oil and natural gas. Concerning industry, we 

find a significant response of electricity for cooling in tropical countries and of fuel oil 

and electricity for heating in temperate countries.  

 

                                                             
5 De Cian E. and Sue Wing  I. (2014)  “Climate change impacts on energy demand”, CMCC Research paper  
RP0240 and www.sisclima.it/wp-content/uploads/2013/10/SISC_Conference_Proceedings.pdf 

 

http://www.cmcc.it/publications/rp0240-climate-change-impacts-on-energy-demand
http://www.cmcc.it/publications/rp0240-climate-change-impacts-on-energy-demand
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Table 2: Agriculture. Estimated long-run elasticities to precipitation and temperature 
from Model 1 (eq. 2). Underlined: p < 10%, bold italic: p < 5%. 

 

 

 

Table 3: Energy. Estimated long-run elasticities to temperature from Model 2 (eq. 3). 
Underlined: p < 10%, bold italic: p < 5%. 

  

Trop- Temp-
ical erate

Rain- Irri- Rain- Irri- Rain- Irri- Rain- Irri- Rain- Irri- Rain- Irri-
fed gated fed gated fed gated fed gated fed gated fed gated

<5 0.05 -0.4 0.11 0.21 -0.51 0.01
>15 0.09 -0.86 -0.19 1.36 -1.39 0.58

17.5-22.5 -0.09 0 -0.35 0.39 -0.66 0.11 0.22 -0.3
22.5-27.5 -0.15 0.1 -0.35 0.41 -0.52 0.26 -0.4 0.19 -2.25 -0.75 -0.02 -0.06
>27.5 -0.16 0.12 -2.32 0.85 -0.21 0.65 -0.03 -0.02 -2.25 -0.84 -1.27 -1.08

Tropical Temperate

Maize Sorghum Rice Wheat

Tropical Temperate Tropical Temperate

Ely FuelOil Ely FuelOil Ely Gas Ely Gas Ely FuelOil FuelOil Ely FuelOil Gas Ely FuelOil Gas

Heating (<12.5) ns 0.046 ns 0.046 ns 0.009 -0.006 0.009 -0.023 ns 0.059 ns 0.099 ns 0.011 0.099 0.016

Cooling (<27.5) 0.021 ns 0.021 ns ns ns 0.019 ns 0.004 ns ns 0.006 ns ns 0.013 ns ns

Agriculture Commercial Industry Residential
Tropical Temperate Tropical Temperate Tropical Temperate Tropical Temperate
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6. FUTURE IMPACT CALCULATION 
 

The impact of future climate change is calculated by combining the estimated 

parameters with Representative Concentration Pathway trajectories (RCP 4.5 and 

8.5) simulated by an ensemble of five climate models in the CMIP5 project6 , 

CCSM4, CNRM-CM5, GFDL-CM3, MIROC5, MPI-ESM-MR. For every model-

scenario combination we calculate producer countries’ current (2006-15) and future 

(2046-55) distributions of simulated daily temperature (T�cell∈ii,C
k,m  and T�cell∈ii,F

k,m ) and 

precipitation (P�cell∈ii,C
j,m  and P�cell∈ii,F

j,m ) at the grid cell level. Combining these variables 

with the fitted long-run equilibrium response, we obtain the climate shocks, defined 

as the ratio between future and current yields, in the case of agriculture, and  

between future and current energy demand, in the case of energy, at the grid cell 

level: 

 

ycell,F
CC,m

ycell,C
CC,m = exp��θ�1

k,m∆T�cellϵi,F
k,m

K

k=1

+ �θ�2
j,m∆P����cellϵi,F

j,m
J

j=1

� 

 

qcell∈i,FCC

qcell∈i,CCC = exp{�θ�1k�DTcell∈i,Fk ωcell∈i,F − DTcell∈i,Ck ωcell∈i,C�
K

k=1

 

 

Note that in the case of energy demand we here focus on the future impacts due to 

changes in temperature.  

  

                                                             
6 All data was accessed from the http://pcmdi9.llnl.gov/esgf-web-fe/between June 1st and August 31st, 2013. 

http://pcmdi9.llnl.gov/esgf-web-fe/
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7. FUTURE DATA AND CLIMATE PROJECTIONS  
Figure 1 shows the change in future exposure to cold days (with daily average 

temperature below 12.5°C) and to hot days (with daily average  temperature above 

27.5°C) centered in 2050, considering the 2045-2055 decade, according to the 

multi-model pattern of exposure in China. Chinese inland areas will experience a 

reduction in cold days, whereas coastal, southern areas will face an increased 

exposure to hot days. Consistently, the exposure to hot days is stronger in RCP 8.5, 

which is also the scenario with the stronger temperature increase, than in RCP 4.5.  

  

  

Figure 1: Change in future exposure to hot and cold days around 2050 (2045-
2055) using 5 GCMs models (multi-model mean). 
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Figure 2 shows how the productivity of maize, rice, wheat and sorghum could 

change in RCP 8.5. This is done under the assumption that the areas where these 

crops are grown today are not going to change in the future. Red areas denote 

potential reduction in yields, whereas blue indicate potential increases.  

 

  

  

 

 

Figure 2: Change in crop yields due to temperature change in 2050 (2045-
2055) , RCP 8.5, 5 GCMs models (multi-model mean). 
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China’s coastal areas show a moderate decline in main cereal yields, that 

however remain within the range of the -1%. These are higher in rain-fed than in 

irrigated crops (note that in Figure 2 the categorization in the maps are different 

across rain-fed and irrigated agriculture).  

Figure 3 shows the potential impact on sectoral energy demand, for those 

sectors and energy vectors where temperature played a statistically significant role. 

As can be seen in the residential sector of China’s coastal areas there is a clear 

dominance of the cooling effect with increase in electricity demand often higher than 

the 66%. On the contrary gas and oil for heating purposes decline in a range 

between the 11% and 15% the former and the 34% and 70% the latter. A similar 

pattern in electricity demand can be observed in the agriculture and commercial 

sectors where it demonstrates a generalized increase larger than the 40%. The 

demand of energy for heating purposes declines everywhere, but less in the 

southern and coastal areas than in the inner regions of the country. 

All in all, Chinese coastal areas depict a stronger increase in electricity demand 

and a lower decrease in oil and gas demand than interior regions. This seems to 

suggest that in the former there is a higher probability to observe a net increase in 

energy demand than in the latter.   
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Figure 3: Change in energy demand due temperature change in 2050 (2045-

2055) , RCP 8.5, 5 GCMs models (multi-model mean). 
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8. PRELIMINARY CONCLUSIONS AND NEXT STEPS 
 

This exercise presents a preliminary application of a statistical/econometric 

technique to estimate the potential future impact of climate change on agriculture 

and energy demand in China. In a first step, a relation has been estimated between 

the two variables of interest, and a set of explanatories: temperature, precipitation, 

and GDP, using a world panel data set. In addition to estimate how much the 

climate effect in each country differs from the group mean, the error correction 

model used, enables to identify short and long-term responses to the changing 

climate. Estimates identify a negative effect of temperature for rain-fed crops yields, 

and a  smaller or even positive one for irrigated crops. High precipitation can exert a 

positive effect in tropical areas for maize and rice, which grow under average high 

precipitation conditions, whereas it is negative for wheat. Estimates of the 

responses of energy demand point out a cooling effect, observed in electricity, 

which is stronger in temperate regions in residential and commercial sectors. Also a 

heating effect has been identified for fuel oil and natural gas. The industrial sector 

highlights a significant response of electricity for cooling in tropical countries and of 

fuel oil and electricity for heating in temperate countries.  

In a second step, the relation identified has been projected to the future (2050) 

and then downscaled with a resolution of 0.5° x 0.5° grid for China, using spatially 

resolved climatic characteristics (temperature and precipitation) in the country, 

based upon projections of an ensemble of 5 climate models for two different climate 

change scenarios: RCP 8.5 and 4.5. 

Main results, referred to RCP 8.5, highlight that China coastal areas may 

highlight a moderate reduction in cereal yields, with higher losses in rain-fed than in 

irrigated agriculture. These preliminary outcomes also show that productivity 

decrease are not higher than the 1% in 2050.  

When energy demand is concerned, coastal areas in China show a clear 

dominance of the cooling effect for electricity as its demand increases in the 
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residential, commercial and agricultural sectors. This effect is present, but milder in 

the inner areas of the country. On the contrary, the demand of fossil energy (oil and 

gas) for heating purposes declines everywhere, but less in the southern and coastal 

areas than in the inland. This seems to suggest that in the former there is a higher 

probability to observe a net increase in energy demand than in the latter because of 

climate change stressors. 

These are just preliminary results and further refinements are expected: 

- firstly, and trivially a better characterization of impacts at the grid level 

choosing carefully the interval categories to display such that to obtain more 

informative maps and allow a  deeper analysis of the outcome obtained; 

- secondly, identification of the net regional (i.e. coastal area wide) effect  both 

for agriculture and energy demand in order to characterize the region as a 

whole and highlight its specificity compared to other areas of the country; 

- thirdly, by coupling this spatial analysis with information about the economic 

structure of the region analyzed, recovering data at the provincial level, 

deriving higher order implication for the economic activity at the provincial 

level itself.      
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