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SUMMARY Stochastic disaggregation model, based on coupling of the
modified version of the Bartlett-Lewis Rectangular Pulse stochastic rainfall
model and proportional adjusting procedure, is shown to disaggregate daily
observed precipitation to hourly scale. Furthermore synthetic hourly time
series are generated.This model requires the identification of a set of
parameters that allow to reproduce, as well as possible, the statistical
properties of the observed precipitation. The identification is formulated as
a global optimization problem. A comparison between observed and
modeled statistics of the precipitation time series is presented for the
weather station of San Martino Valle Caudina (Southern Italy).
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INTRODUCTION

This work is part of the research activities per-
formed at the REMHI division of CMCC with
the aim of understanding and quantifying the
potential impact of climate change on geo hy-
drological impacts regulated by sub-hourly dy-
namics (for instance, rainfall-induced shallow
landslide and floods in small/impervious water-
sheds). Unfortunately, state-of-the-art climate
models, including those with a high spatial-
temporal resolution, do not show good pre-
dictability on this time scale, hence they need
to be combined with other methods to provide
useful information in this range. A common ap-
proach in literature is to take the model output
at daily scale and downscale it using stochastic
disaggregation rainfall models.
This work represents a first step toward the im-
plementation of stochastic disaggregation rain-
fall models. In particular, this step concerns
the optimization of a stochastic disaggrega-
tion model on a specific test case, in order
to assess its capability of providing rainfall se-
ries on a sub-daily scale, starting from input
data observed on a daily scale. Specifically,
a stochastic precipitation model assuming that
the precipitation events are distributed accord-
ing to a Poisson process is considered [17]
[18], together with a temporal disaggregation
technique based on a proportional adjustment
procedure [11]. The validation of the disag-
gregation model is performed by comparing
the computed hourly precipitation with available
observed hourly precipitation. This work will
provide useful information for future application
of the disaggregation model to simulated daily
data.
In this context, a crucial issue is the identifi-
cation of a set of parameters of the stochastic
model that allow to reproduce, as well as pos-
sible, the statistical properties of the observed
precipitation. The identification is formulated as

a global optimization problem, i.e., finding the
global minimum of a suitable function, which
measures the “distance” between the values
of appropriate statistics, expressed in terms of
the model parameters, and the same statistics
computed by using observed precipitation data.
The minimization problem is solved using the
Evolutionary Annealing-Simplex algorithm [5],
which combines a direct search approach with
a purely heuristic approach. A sensitivity anal-
ysis is also performed in order to understand
how the model parameters computed by us-
ing the optimization algorithm are affected by
variations of the input data and algorithmic pa-
rameters.
Hourly precipitation data coming from the mete-
orological station of San Martino Valle Caudina
(AV) are used for validation. They cover about
12 years (2001-2012). These data are particu-
larly significant as the meteorological station is
close to a complex of slopes that have been af-
fected by flow slides phenomena several times
in recent years.
This work was done as part of a collabora-
tion between the Department of Mathematics
and Physics of the Second University of Naples
(SUN), the Italian Aerospace Research Centre
(CIRA) and the Euro-Mediterranean Centre on
Climate Change (CMCC) .

THE STOCHASTIC DISAGGREGATION
MODEL

The selected disaggregation model combines a
modified version of the Bartlett-Lewis Rectan-
gular Pulse stochastic rainfall model (Random
Parameter Bartlett-Lewis Rectangular Pulse -
RPBLRP) with a suitable rainfall disaggregation
technique. The latter implements an empirical
correction procedure called proportional adjust-
ing procedure [8] [9] [14] [22], in order to modify
the lower-level (e.g., hourly) time series, gen-
erated by the Bartlett-Lewis stochastic model,
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so that it is consistent with a given higher-level
(e.g., daily) time series.
The Bartlett-Lewis model, extensively tested
with different climates and different time scales
[10], has proven to properly reproduce the
main features of the rainfall pattern from the
hourly scale to the daily scale [17] [18] [20]
[21]. For clarity and completeness, it is out-
lined in Appendix The Bartlett-Lewis Rectangular
Pulse Stochastic Rainfall Model.
The adjusting procedure is described in Ap-
pendix Proportional adjusting procedure. We note
that its application to precipitation events and
cells can extend to more than a day. However,
if applied over a long simulation period, the
disaggregation model may require a very high
computational effort. To avoid this, the simu-
lation period should be divided into as many
sub-periods as possible. To this aim, differ-
ent sequences (clusters) of wet days, sepa-
rated by at least one dry day, are considered as
independent events. This empirical observa-
tion is consistent with the Bartlett-Lewis model,
in which the arrivals of the rainfall events are
modeled as a Poisson process. This allows
the independent treatment of each cluster of
wet days, which reduces the computation time.
Then, the Bartlett-Lewis model is applied sepa-
rately to each cluster of wet days. Furthermore,
it is solved several times for each cluster and
the generated sequence “closest” to the known
value of the corresponding higher-level variable
is chosen.
The Bartlett-Lewis model and the proportional
adjusting procedure model are implemented in
the Hyetos software system [12] [13], which is
used in our experiments.

IDENTIFICATION OF THE
PARAMETERS IN THE
BARTLETT-LEWIS RECTANGULAR
PULSE MODEL

The calibration of the BLRP model is a cru-
cial step in the overall process. The model is
calibrated using the Generalized Method of Mo-
ments (GMM), in which the model parameters
are estimated by solving a suitable optimiza-
tion problem. The objective function, i.e., the
function to be minimized, is a weighted sum of
the “distances” between the statistical moments
computed using analytical expressions and the
corresponding values obtained from observed
data.
There are several approaches to calibration, but
there are no general indications about the sta-
tistical moments to be considered, or the levels
of aggregation in the objective function, or the
weights to be used [23]. Several authors have
empirically addressed some of these issues,
coming to different conclusions [2] [1] [23]. The
analytical formulas reported in Appendix The
Bartlett-Lewis Rectangular Pulse Stochastic Rain-
fall Model allow to define the main statistical
moments at different intervals of time aggre-
gation. To take into account the possible vari-
ations in the rainfall pattern on the entire day,
aggregations at 1, 6, 12 and 24 hours are used.
In particular, for the calibration phase, the fol-
lowing statistics are considered at different time
scales:

mean (En),

variance (V arn),

lag 1 covariance (Covn) (lag 1 stands for
one hour delay),

percentage of dry days (Pn),
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where n = 1, 6, 12, 24 indicates the range of
data aggregation used. The analytical expres-
sions of such variables through the parameter
of BLRP approach [21] are:

En =
hnλµcµxν

α− 1
(1)

V arn = 2A1

[
hn(α− 3)ν2−α − ν3−α+

(ν + hn)3−α]− 2A2

[
hnφ(α− 3)ν2−α−

ν3−α + (ν + hnφ)3−α]
(2)

Covn = A1[(ν + 2hn)3−α − 2(ν + hn)3−α+

ν3−α]−A2[(ν + 2hnφ)3−α−
2(ν + hnφ)3−αν3−α]

(3)

Pn =

{
−hnλ−

λ

φ

ν

α− 1
·[

1 + φ(κ+ φ)− 1

4
φ(κ+ φ)(κ+ 4φ)+

1

72
φ(κ+ φ)(4κ2 + 27κφ+ 72φ2)

]
+

λ

φ+ κ

1

α− 1

[
ν +

kνα

φ
(ν + hn) (κ+ φ)α−1

]
·(

1− κ− φ+
3

2
κφ+ φ2 +

1

2
κ2

)}
(4)

the constants A1 e A1 are defined by

A1 =
λµcν

α

(α− 1)(α− 2)(α− 3)

(
2µ2

x +
κφµ2

x

φ2 − 1

)
(5)

A2 =
λµcκµ

2
xν

α

φ2(φ2 − 1)(α− 1)(α− 2)(α− 3)
(6)

The model calibration is performed by minimiz-
ing the following function:

F = S1 + S6 + S12 + S24 (7)

where

Sn = w1

(
En
En∗

− 1

)2

+ w2

(
V arn
V arn∗

− 1

)2

+

w3

(
Covn
Covn∗

− 1

)2

+ w4

(
Pn
Pn∗
− 1

)2

(8)

En∗ , V arn∗ , Covn∗ and Pn∗ are the sample val-
ues of the statistics obtained from the observed
data, and En, V arn, Covn and Pn are the val-
ues obtained using (1) - (4). The scalarsw1,w2,
w3 and w4 are weights, the choice of which de-
pends on the objective of the study, in particular
on the importance of better reproducing certain
statistics with respect to others. Therefore, the
objective function minimizes the weighted rel-
ative square error of the selected statistics at
different aggregation time scales.
The theoretical range of variability for each pa-
rameter of the RPBLRP model is the interval
[0,+∞], except for α, which is assumed greater
than 1 (see Appendix The Bartlett-Lewis Rectan-
gular Pulse Stochastic Rainfall Model). In prac-
tice, the theoretical bounds on these parame-
ters are restricted, identifying smaller intervals
of variability for parameters with a clear phys-
ical meaning. In table 1 shows the bound on
the parameters of the RPBLRP model, which
define the feasible search space the four sea-
sons.
The minimization problem is solved using the
Evolutionary Annealing-Simplex (EAS) algo-
rithm. EAS is a heuristic optimization method,
which combines the Simulated Annealing al-
gorithm with the Nelder-Mead algorithm [16].
It is based on a controlled random search
technique, where a generalised Nelder-Mead
method is coupled with an annealing strategy.
The core of EAS is the evolution of a sim-
plex through Nelder-Mead-type movements,
according to a combination of deterministic and
stochastic rules. An iteration cycle of the algo-
rithm is reported in Appendix Typical iteration
cycle of EAS algorithm.
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Parameter α λ(h−1) ν(h) κ φ µx(mm/h)

Lower bound 1.01 0.001 0.1 0.001 0.001 0.001

Upper bound 40 0.1 48 2 1 12.5

Table 1
Lower and upper bounds on the RPBLRP model parameters for the autumn, winter and spring seasons.

CASE HISTORY OF SAN MARTINO
VALLE CAUDINA (AV)

The weather station in San Martino Valle Cau-
dina (Southern Italy) provides a series of pre-
cipitation data at hourly scale for about twelve
years (2001-2012). The location is consid-
ered of particular interest for two main reasons:
firstly, the series of available hourly rainfall data
is among the most complete ones available
for the Campania Region; secondly, it is in-
stalled very close to slopes that have been af-
fected several times by flowslides (Cervinara,
1999) causing extensive damages and casual-
ties. The hydraulic and mechanical character-
istics of volcanic soils involved in these events
make it relevant for triggering especially heavy
precipitation on a daily/sub-daily time scale.
For this reason, the development of statistical
techniques to estimate the evolution of sub-
daily rainfall, even if the only data available are
on a daily scale, can be of considerable interest,
e.g., for the back-analysis of landslide events.
Figure 1 shows the evolution of the cumula-
tive seasonal precipitation for the period 2001-
2012. Winter cumulative values are consis-
tently higher than in other seasons. The inter-
mediate seasons (SON and MAM) return com-
parable cumulative values, although Autumn
is characterized by more pronounced interan-
nual variability. During the summer, precipita-
tion values rarely exceed 200 mm. Figure 2
shows that maximum daily precipitation values
are obtained during the summer and intermedi-
ate seasons and, therefore, they can be asso-

ciated with convective phenomena. The maxi-
mum value is still observed during the wettest
year (2010).
In Figure 3 the maximum values of hourly pre-
cipitation are shown; the higher values are
recorded during the autumn season (SON). We
note that, for the Mediterranean area, the au-
tumn season is characterized by an increased
frequency of extreme events, which can cause
damage and casualties (Genoa, November
2011-2014; Sardinia, November 2013).

Figure 1:
Cumulative seasonal precipitation for weather station of

San Martino Valle Caudina (AV).

CHOICE OF THE ALGORITHMIC
PARAMETERS

A set of tests has been carried out to obtain a
robust estimation of the parameters of the mod-
ified Bartlett-Lewis Rectangular Pulse model
(RPBLRP). Since the EAS optimization method
uses a heuristic approach and has several al-
gorithmic parameters, the goal of the computa-
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Figure 2:
Maximum daily precipitation, on seasonal scale, for
weather station of San Martino Valle Caudina (AV).

Figure 3:
Maximum hourly precipitation, on seasonal scale, for
weather station of San Martino Valle Caudina (AV).

tional experiments is to define the values of the
algorithmic parameters that allow to reproduce
the statistics for the observed rainfall in a rea-
sonably confident way. The experiments have
been performed by using the function eas of the
package HyetosR (Appendix The Hyetos soft-
ware system), implementing an enhanced ver-
sion of the EAS optimization method (Section
Identification of the parameters in the Bartlett-Lewis
Rectangular Pulse model).
A first reference test has been carried out set-
ting the input parameters of the eas function to
their default values and carrying out 20 execu-
tions of the algorithm.

Subsequently the input parameters, assumed
as reference control variables, are:

ftol: a positive number that specifies
the fractional convergence tolerance to be
achieved in the function value. Default is
ftol = 1.e− 07.

ratio: a positive number, typically be-
tween 0.80− 0.99, that specifies the frac-
tion of temperature reduction, when a lo-
cal minimum is found. Default is ratio =

0.99.

pmut: a positive number, between 0.5 −
0.95, that specifies the probability of ac-
cepting an offspring generated via mu-
tation. Default is pmut = 0.9. Higher
values are suggested for very hard prob-
lems, when it is essential to increase ran-
domness.

beta: a positive integer, greater than 1,
that specifies the annealing schedule pa-
rameter. Default is beta = 2.

maxclimbs: a positive integer, typically
between 3 − 5, that specifies the maxi-
mum number of uphill steps. Default is
maxclimbs = 5.

As expected, by varying ftol and setting all the
remaining input parameters of eas to their de-
fault values, we found that decreasing the value
of ftol increases the execution time of the algo-
rithm, while the variance of the values of the sin-
gle parameters tends to decrease significantly
(Figures 4-9). Using a very small ftol value
sometimes leads to exceeding the maximum
number of function evaluations, without satisfy-
ing the tolerance. In order to evaluate the relia-
bility and accuracy of the results, EAS has been
run with different values of ftol (ranging from
1.e − 1 to 1.e − 12) on 20 test sets concerning
the winter season on the time span 2001-2012.



Stochastic models for the disaggregation of precipitation time series on sub-daily scale

07

C
en

tr
o

E
ur

o-
M

ed
ite

rr
an

eo
su

iC
am

bi
am

en
ti

C
lim

at
ic

i

Seasons α λ(d−1) ν(d) κ φ µx(mm/d)

Autumn 2.0915 0.4164 0.0048 0.3181 0.0177 173.8233

Winter 2.5780 0.6030 0.0672 0.5703 0.1018 46.4391

Spring 2.7735 0.4326 0.0109 0.5882 0.0259 85.2918

Summer 40 0.0803 0.5817 0.1907 0.0473 284.8187

Table 2
Parameters of the RPBLRP model computed by minimizing the objective function.

The mean and variance of the resulting model
parameters (i.e., of the solution obtained with
EAS) have been computed. These statistics
are reported in Figures 4-9.
According this preliminary study, it was decided
to set ftol = 1e− 8 for the winter season. This
value of ftol has been chosen since it provides,
for all the RPBLRP model parameters, aver-
age values slightly affected by variance and
at same time sustainable computational time.
With this choice of ftol the relative distance of
the parameters obtained from their average is
generally about 1e − 10. For similar reasons,
ftol = 1e− 8 was chosen for the springer sea-
son too, while ftol = 1e − 10 was selected for
the summer and autumn seasons.
By varying ratio and setting the remaining in-
put parameters to their default values, we found
that the more the temperature decreases, the
faster the algorithm converges. On the other
hand, the solution is more accurate when the
temperature decreases more slowly. No signif-
icant changes have been observed in the solu-
tion by varying other algorithmic parameters.
In spite the parameters differ from their mean
value with a variance of 1e − 10, among the
20 sets of RPBLRP model parameters result-
ing from the application of the EAS algorithm,
those corresponding to the lower value of the
objective function are chosen. Table 2 shows
these parameters for the autumn, winter, spring
and summer seasons.

Figure 4:
Mean (•) and variance (◦) related to the α parameter of

the RPBLRP model to varying of ftol.

PHENOMENOLOGICAL EXPLANATION
OF THE PARAMETERS OF THE
RANDOM PARAMETER
BARTLETT-LEWIS RECTANGULAR
PULSE MODEL

The parameters of the RPBLRP model can
be related to different aspects of the struc-
ture of precipitation events. Here, the effect
of seasonal variability on the parameters of the
RPBLRP model is examined. Table 3 shows
the average duration of the interarrival time of
events (1/λ(h)), the average duration of the
cells (E(1/η)(h)), the average number of cells
per event (µc), the average intensity of the
cells (µx(mm/h)), and the average duration of
the event (µT (h)) for the precipitation data of
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Seasons 1/λ(h) E(1/η)(h) µc µx(mm/h) µT (h)

Autumn 57.6313 0.1065 19.0078 7.2426 6.0633

Winter 39.8018 1.0221 6.5996 1.9350 10.5898

Spring 55.4754 0.1481 23.7005 3.5538 5.7953

Summer 298.7913 0.3580 5.0318 11.8675 7.6477

Table 3
Statistical properties of precipitation series in question as a function of the calculated parameters of the RPBLRP model.

Figure 5:
Mean (•) and variance (◦) related to the λ parameter of

the RPBLRP model to varying of ftol.

the meteorological station of San Martino Valle
Caudina. A comparison between the results
on the observed data in Appendix Identification
of independent events of precipitation and the re-
sults in Table 3 clearly shows that the RPBLRP
model underestimates the duration of the inter-
arrival time of the events, probably taking, on
average, a “time of independence” of events
(tb min) much smaller than the time obtained
with the methods described in Appendix Identi-
fication of independent events of precipitation. Sim-
ilar results have been found for weather stations
in Belgium [24]. This underestimation is re-
flected in the low values found for the average
time of the event and in the high values found
for the average intensity of the event, for the
four seasons. On the other hand, it must be

Figure 6:
Mean (•) and variance (◦) related to the ν parameter of

the RPBLRP model to varying of ftol.

taken into account that the identification of in-
dependent events is the result of a model too,
and hence it can be obviously affected by un-
certainties comparable with those found using
the Bartlett-Lewis model.

APPLICATION TO THE PRECIPITATION
DATA OF THE METEOROLOGICAL
STATION OF SAN MARTINO VALLE
CAUDINA (AV)

After fixing the parameters of the RPBLRP
model, the hourly precipitation series from the
daily precipitation historical series have been
estimated. The performance of the disaggre-
gation model has been tested first, i.e., the ad-
equacy of the Bartlett-Lewis model and its pa-
rameters, and of the disaggregation technique,
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Figure 7:
Mean (•) and variance (◦) related to the κ parameter of

the RPBLRP model to varying of ftol.

Figure 8:
Mean (•) and variance (◦) related to the ϕ parameter of

the RPBLRP model to varying of ftol.

to preserve the statistical properties of the pre-
cipitation time series. The test has been per-
formed by using the function DisagSimul.test

of the package HyetosR (Appendix The Hyetos
software system).
The argument RepetOpt of the function
DisagSimul.test is a list of parameters, listed
below, that specifying any changes to default
values of the repetition schema and disaggre-
gation illustrated in Appendix Proportional ad-
justing procedure.

DistAllowed: a positive number that

Figure 9:
Mean (•) and variance (◦) related to the µx parameter

of the RPBLRP model to varying of ftol.

specifies the distance used to judge
whether synthetic daily depths resemble
the real ones. Default is DistAllowed =

0.1.

FacLevel1Rep: a positive number that
specifies the factor for Level 1 repetitions
allowed. Default is FacLevel1Rep = 20.

MinLevel1Rep: a positive integer that
specifies the minimum number of Level
1 repetitions allowed. Default is
FacLevel1Rep = 50.

TotalRepAllowed: a positive integer that
specifies the total repetitions allowed.
Default is TotalRepAllowed = 5000.

The number of repetitions of Level 1 is de-
termined by multiplying FacLevel1Rep by the
number of attempts made to establish an appro-
priate sequence of wet days (repetitions of the
level are established by the user, and not deter-
mined by the program). In this way, the higher
the number of required repetitions of Level 0,
the greater the number of repetitions of Level
1, and the fewer the number of repetitions of
Level 2. However, the number of repetitions of
Level 1 cannot be smaller than MinLevel1Rep

and the total number of repetitions of Levels 1
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and 2 cannot exceed TotalRepAllowed.
In our tests, the model is applied with the de-
fault parameters of the argument RepetOpt. In
fact, no reasons arise to use a maximum al-
lowed distance (DistAllowed) smaller than 0.1,
because there is no gain in terms of reduction
of data distortion. From the tests carried out,
it was found that significantly larger values of
DistAllowed = 0.1, even if leading to a smaller
computation time, can significantly increase the
variation and the asymmetry of the precipitation
process [13].
Then, the SequentialSimul function of the
package HyetosR has been used for the gener-
ation of precipitation series on daily and hourly
time scales, using the Bartlett-Lewis Rectangu-
lar Pulse precipitation model with the selected
parameters, without performing any disaggre-
gation. Tables 4-7 show the results of tests
carried out applying DisagSimul.test with its
default parameter values, using the time se-
ries of daily and hourly precipitation, and the
selected parameters of the RPBLRP model for
autumn, winter, spring and summer. Theoreti-
cal statistics, computed by using the analytical
expressions given in Section Identification of the
parameters in the Bartlett-Lewis Rectangular Pulse
model and the selected RPBLRP model pa-
rameters, as well as synthetical statistics, i.e.,
statistics concerning the synthetic precipitation
series, obtained applying SequentialSimul with
its default parameter values, are also reported.
Note that Autocorrelationi with i = 0, ..., 10 in-
dicates lagi autocorrelation, where lagi stands
for a delay of i hours.
Historical statistics are properly reproduced, al-
though only four values are actually used for
the estimation of the RPBLRP model parame-
ters. The estimated parameters of the RPBLRP
model, shown in Table 3, are physically reason-
able, confirming the ability of the model to cap-
ture the general temporal structure of rainfall
events.

In terms of variation, a generally satisfying
preservation of the disaggregated series com-
pared to the original ones is observed, but with
a slight positive bias, due to the fact that the
distance of the values of daily precipitation, ob-
tained as the sum of the lower level variables
of the disaggregated series, from the values of
the original daily precipitation is below 0.01 [13].
In terms of asymmetry coefficients, the Bartlett-
Lewis model fails to preserve the asymmetry of
the temporal distribution of precipitation and,
therefore, the disaggregation model cannot ex-
plicitly preserve the asymmetry of the distribu-
tion.
Figures 10(a)-10(d) show the trend of the au-
tocorrelation coefficients of the hourly intensity
of the precipitation for lags up to 10 hours. It
worth noting that the disaggregation process
simulates a decrease faster than that observed,
provided by the synthetic series, or directly ob-
tained from the RPBLRP model parameters. In
particular, the last two series tend to coincide
in most cases, showing how the generation of
a synthetic series of 100 years effectively repro-
duces average characteristics of the precipita-
tion through the stochastic approach. On av-
erage, the performances of the synthetic se-
ries and of the values obtained directly from
the RPBLRP model parameters are better than
those of the disaggregated series, showing that
the time disaggregation is the step that causes
the greatest error in the prediction. A RPBLRP
model parameter critical for the function of lag1

autocorrelation is the shape parameter α. The
inspection of the correlation structure reveals a
dependence of the following type:

Corrn ≈ hn(lag − 1) + ν
3−α

+

(laghn + ν)3−α + hn(lag + 1) + ν
3−α

(9)
which, for α → 2, presents a slow decay [15],
while for α > 3 shows a fast decay.
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Statistics Original Disaggregated Theoretical Synthetical
Hours 26064 26064

Mean(mm) 0.2408 0.2408 0.2516 0.2493
Standard Deviation(mm) 1.3142 1.4757 1.3173 1.3097

Variation 5.4583 6.1291 5.2352 5.2539
Asymmetry 10.0288 11.8781 10.8997

Autocorrelation 0 1 1 1 1
Autocorrelation 1 0.5032 0.4597 0.5079 0.5200
Autocorrelation 2 0.3463 0.2847 0.3416 0.3571
Autocorrelation 3 0.2721 0.2293 0.2799 0.2956
Autocorrelation 4 0.2280 0.1894 0.2412 0.2575
Autocorrelation 5 0.1795 0.1757 0.2132 0.2291
Autocorrelation 6 0.1619 0.1429 0.1916 0.2076
Autocorrelation 7 0.1537 0.1366 0.1741 0.1884
Autocorrelation 8 0.1381 0.1103 0.1596 0.1737
Autocorrelation 9 0.1132 0.1038 0.1474 0.1620
Autocorrelation 10 0.1196 0.0887 0.1370 0.1557

Proportion Dry 0.8921 0.9195 0.9035 0.9044

Table 4
Comparison, for the autumn season, between the values of the statistics of the disaggregated and synthetical historical series and

the values of the theoretical statistics.

Statistics Original Disaggregated Theoretical Synthetical
Hours 25800 25800

Mean(mm) 0.3130 0.3130 0.3280 0.3301
Standard Deviation(mm) 1.1600 1.2700 1.1386 1.1341

Variation 3.7100 4.0800 3.4710 3.4352
Asymmetry 7.0000 6.1200 5.3804

Autocorrelation 0 1 1 1 1
Autocorrelation 1 0.6600 0.7070 0.7244 0.7236
Autocorrelation 2 0.4900 0.4530 0.5076 0.5077
Autocorrelation 3 0.3910 0.3090 0.3988 0.4007
Autocorrelation 4 0.3230 0.2180 0.3322 0.3367
Autocorrelation 5 0.2600 0.1580 0.2865 0.2914
Autocorrelation 6 0.2250 0.1250 0.2527 0.2574
Autocorrelation 7 0.1930 0.1000 0.2264 0.2309
Autocorrelation 8 0.1630 0.0815 0.2051 0.2086
Autocorrelation 9 0.1380 0.0704 0.1876 0.1903
Autocorrelation 10 0.1320 0.0684 0.1727 0.1757

Proportion Dry 0.8140 0.8504 0.8219 0.8128

Table 5
Comparison, for the winter season, between the values of the statistics of the disaggregated and synthetical historical series and

the values of the theoretical statistics.
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Statistics Original Disaggregated Theoretical Synthetical
Hours 26376 26376

Mean(mm) 0.2106 0.2106 0.2240 0.2242
Standard Deviation(mm) 0.9851 1.1325 0.9916 0.9923

Variation 4.6774 5.3773 4.4262 4.4249
Asymmetry 9.2444 11.3507 7.6248

Autocorrelation 0 1 1 1 1
Autocorrelation 1 0.5403 0.5393 0.5465 0.5456
Autocorrelation 2 0.3704 0.3218 0.3851 0.3834
Autocorrelation 3 0.2993 0.2438 0.3203 0.3206
Autocorrelation 4 0.2408 0.2065 0.2759 0.2753
Autocorrelation 5 0.2064 0.1671 0.2419 0.2450
Autocorrelation 6 0.1731 0.1185 0.2146 0.2161
Autocorrelation 7 0.1574 0.1086 0.1921 0.1925
Autocorrelation 8 0.1502 0.0983 0.1731 0.1753
Autocorrelation 9 0.1477 0.0789 0.1570 0.1607
Autocorrelation 10 0.1415 0.0846 0.1432 0.1445

Proportion Dry 0.8821 0.9070 0.8933 0.8927

Table 6
Comparison, for the spring season, between the values of the statistics of the disaggregated and synthetical historical series and

the values of the theoretical statistics.

Statistics Original Disaggregated Theoretical Synthetical

Hours 22824 22824
Mean(mm) 0.0688 0.0688 0.0715 0.0699

Standard Deviation(mm) 1.0097 1.1780 0.9822 0.9698
Variation 14.6698 17.1150 13.7332 13.8810

Asymmetry 36.0875 49.9468 26.3492
Autocorrelation 0 1 1 1 1
Autocorrelation 1 0.3520 0.3311 0.3546 0.3413
Autocorrelation 2 0.1365 0.0831 0.1449 0.1392
Autocorrelation 3 0.0396 0.0300 0.1149 0.1093
Autocorrelation 4 0.0212 0.0248 0.0998 0.0974
Autocorrelation 5 0.0139 0.0351 0.0875 0.0851
Autocorrelation 6 0.0137 0.0336 0.0768 0.0767
Autocorrelation 7 0.0103 0.0308 0.0675 0.0644
Autocorrelation 8 0.0059 0.0769 0.0593 0.0568
Autocorrelation 9 0.0081 0.0271 0.0522 0.0491
Autocorrelation 10 0.0997 0.0231 0.0459 0.0473

Proportion Dry 0.9753 0.9816 0.9836 0.9838

Table 7
Comparison, for the summer season, between the values of the statistics of the disaggregated and synthetical historical series and

the values of the theoretical statistics.
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(a) (b)

(c) (d)

Figure 10:
Comparison, for the (a) autumn, (b) winter, (c) spring and (d) summer season, among the values of the autocorrelation, with a delay

of i hours (i = 0, ..., 10), of the historical series, and the disaggregated, synthetical and theoretical ones.
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CONCLUSIONS

The aim of this work was to validate the
stochastic model of disaggregation of precipi-
tation mentioned in Section The stochastic disag-
gregation model and described more in detail in
the Appendix, using hourly observed data to-
gether with an analysis of the influence of the
parameters of the Bartlett-Lewis model on the
statistical properties of the simulated precipita-
tion process, aimed at assessing the reliability
of the model when there are no hourly observed
data.
The identification of the parameters of the
Bartlett-Lewis model was formulated as a
global optimization problem and has been
solved using the Evolutionary Annealing-
Simplex algorithm. Given the stochastic na-
ture of this algorithm an analysis has been car-
ried out to understand the sensitivity of the opti-

mal solution (i.e., the parameters of the Bartlett
Lewis model) to some algorithmic parameters,
and to choose the latter so that the computed
Bartlett-Lewis model parameters can provide a
reliable reproduction of the statistical properties
of the observed precipitation.
The quality of the results was assessed by com-
paring the main statistics of observed, disag-
gregated, and synthetic precipitation data and
those obtained by using analytical expressions
with the computed values of the parameters
of the Bartlett-Lewis model. This comparison
showed that the statistics of the observed pre-
cipitation data are properly reproduced. On
average, the predictive capabilities of the syn-
thetic series and the values obtained directly
by using the parameters of the Bartlett-Lewis
model are better than those of the disaggre-
gated series. Nevertheless the results are ad-
equate to the target set.
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APPENDIX

THE BARTLETT-LEWIS
RECTANGULAR PULSE STOCHASTIC
RAINFALL MODEL

In the Bartlett-Lewis Rectangular Pulse (BLRP
model), arrivals of storms are modeled as a
Poisson process with rate λ (by arrival we mean
a random event that occurs in a temporal ref-
erence system). The probability P (s) that s
events occur in an interval ∆t is therefore de-
fined as

P (s) = (λ∆t)
s e
−λ∆t

s!
(10)

The interarrival time between successive
storms, i.e., the time ts between two consec-
utive arrivals, is exponentially distributed with
rate λ:

P (Ts ≤ ts) = 1− e−λts (11)

A random number of cells is assigned to each
storm. Each cell is a precipitation rectangular
pulse, with random duration td and random in-
tensity i. Cell arrivals are modeled as a Poisson
process with parameter β. Thus, the probability
P (c) that c cells occur in a range ∆t is

P (c) = (β∆t)
c e
−β∆t

c!
(12)

The interarrival time, tc, between two subse-
quent cells is exponentially distributed with pa-
rameter β:

P (Tc ≤ tc) = 1− e−βtc (13)

The cells generation process finishes after a
time tg, exponentially distributed with rate γ:

P (Tg ≤ tg) = 1− e−γtg (14)

Finally, for the duration td and the intensity i of
the cells an exponential distribution is assumed
too, with rates η and 1

µx
, respectively:

P (Td ≤ td) = 1− e−ηtd (15)

P (I ≤ i) = 1− e−
i
µx (16)

where µx is the average intensity of the cells of
rainfall. Note that an alternative approach [18],
assumes that the intensity i is a two-parameter
gamma distribution with mean µx and standard
deviation 1

σx
.

The model states that the average number of
cells for each event is generated by a geometric
distribution with mean

µc = 1 +
κ

φ
(17)

where κ and φ are dimensionless parameters
defined as follows:

κ =
β

η
(18)

φ =
γ

η
(19)

The generation process is illustrated graphically
in Figure 11.
The BLRP model does not return satisfactory
results due to a significant overestimation of
the occurrence of dry periods [21]; this does
not make it suitable when an accurate descrip-
tion is required of the alternation of dry periods
and wet periods. To overcome this problem,
a modified version of the model has been de-
veloped, named Random Parameter Bartlett-
Lewis Rectangular Pulse (RPBLRP).
The modified model improves the BLRP model
by assuming that the parameter η, which the
duration of the cells depends on, may vary
randomly from event to event, according to a
Gamma distribution with a shape parameter
α and a scale parameter ν [21]. Therefore,
the probability density function, the expected
value and the variance of the distribution are
described by the following expressions, respec-
tively:

f(η) =
να

Γ(α)
e−νηηα−1 (20)

where
Γ(α) =

∫ ∞
0

tα−1e−tdt (21)
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is the Gamma function,

E(η) =
α

ν
(22)

V ar(η) =
α

ν2
(23)

To ensure that the duration of events is greater
than zero, α > 1 is assumed [21]. While in the
original version of the model all the parameters
are assumed to be constant, in the modified
version η is variable and the κ = β

η and φ = γ
η

are constant.
The modified model allows to have distinct
events with a common structure, but on dif-
ferent time scales; different perturbations are
composed of cells characterized by variable du-
ration and variance for each event (respectively
η−1 and η−2). Similarly, the average interval of
interarrival of the cells and the average duration
of the perturbation (respectively β−1 and γ−2)
vary randomly, but keeping κ and φ constant
throughout the process. Therefore, for larger
values of η (i.e., for shorter durations of the
cells), the interarrival time of the cells and the
duration of the corresponding perturbation are
smaller. This is physically plausible because
longer perturbations are characterized by cells
that tend to have longer “life” and longer inter-
arrival times [21].
From the above expressions other physical
characteristics can be derived, which contribute
to determining the structure of the precipitation;
in particular, it is possible to obtain the average
number, duration and intensity of the cells form-
ing the event: the average number of cells per
event is provided by 17; the average duration
of the cells is

E

(
1

η

)
=

ν

α− 1
(24)

the average duration of the event can be ap-
proximated as follows:

µT ∼=
ν

φ(α− 1)
[1 + φ(κ+ φ)−

1

4
φ(κ+ φ)(κ+ 4φ)+

1

72
φ(κ+ φ) (4κ2 + 27κφ+ 72φ2)

] (25)

the average of the interarrival times of the cells
is obtained from 18:

β = κE(η) (26)

and by 22 it becomes

β = κ
α

ν
(27)

Therefore, in its simplest version the model
uses five parameters, λ, β, γ, η and µx (or
equivalently λ, κ, φ, η and µx) and in its im-
proved version six parameters, κ, φ, α, ν, µx
and σx. The latter version, called Random Pa-
rameter Bartlett-Lewis Gamma Model, provides
a better reproduction of the extreme values of
precipitation [18].

Figure 11:
Graphical representation of the Bartlett-Lewis

Rectangular Pulse model.

PROPORTIONAL ADJUSTING
PROCEDURE

The expression "adjusting a precipitation time
series" refers to a modification of a lower-level
(e.g., hourly) time series, generated for ex-
ample by the Bartlett-Lewis stochastic model,
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so that it is consistent with a given higher-
level (e.g., daily) time series, i.e. the sum
of the lower-level values within a period must
be equal to the corresponding observed upper-
level value.
If a series of data Zp (p = 1, 2, ) is known at an
upper level time scale and a synthetic series X̃s

is generated by a stochastic model at a lower-
level time scale (s = 1, 2, ), the problem is to
modify X̃s into another series Xs that is consis-
tent with the higher-level series. As mentioned
above, we use an adjusting procedure to pre-
serve the additive property, i.e. to annihilate the
difference between the sum of the lower-level
variables within a period and the corresponding
upper-level variable. The procedure should be
accurate in the sense that it should preserve
some statistics or even the complete distribu-
tion of the lower-level variables, at least under
certain conditions. The proportional adjusting
procedure is considered in this work [3] [11].
The proportional adjusting procedure modifies
the original values X̃s to obtain the adjusted
values Xs according to the formula

Xs = X̃s

(
Z∑k
j=1 X̃j

)
(s = 1, ..., k) (28)

where Z is the upper-level variable (for sim-
plicity of notation p = 1 is assumed and the
subscript p from Z is eliminated) and k is the
number of lower-level variables within a higher-
level period. The adjusting procedure proved
to be the most appropriate for the disaggrega-
tion of the precipitation [13]. It is effective in
preserving distributions, if the variables Xs are
independent and follow a Gamma distribution
with common scale parameter, and also pro-
vides a good approximation to the dependent
variables with gamma distribution [3]. More-
over, it has the advantage of not generating
negative values.
The simulation chain is reported in Figure 12,
with reference to the disaggregation of daily

rainfall depths of a period of L consecutive wet
days (preceded and followed by at least one dry
day). The scheme incorporates the four levels
of repetition illustrated below.

Level 0: the Bartlett-Lewis model is run
several times until a sequence of L wet
days equal to the observed one is gener-
ated.

Level 1: the intensities of all cells and pre-
cipitation events are generated and the
resulting daily depths are calculated; the
latter are compared with the original ones
through a “logarithmic distance” given by
the following expression:

d =

[
L∑
i=1

ln

(
Zi + c

Z̃i + c

)2
]1/2

(29)

where Zi and Z̃i are the original and gen-
erated daily depths of day i, respectively,
and c is a constant (c = 0.1mm). The
logarithmic transformation is chosen to
avoid the dominance of high values and
the constant c is introduced to avoid too
small values. If the “distance” d is greater
than an accepted threshold da, then the
intensities of the cells are regenerated
(Level 1 repetitions) without modifying the
time locations of the precipitation events
and their cells. If, however, after a large
number of Level 1 repetitions, the dis-
tance remains greater than the accepted
threshold, the arrangement of precipita-
tion events and cells is assumed not con-
sistent with the original one. In this case
we pass to the Level 2 repetitions.

Level 2: the arrangement of precipitation
events and cells not consistent with the
original ones is deleted and a new one is
generated.
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Level 3: if, for long sequences of wet
days, a sequence of wet days for which
the distance between the observed and
simulated daily precipitation values and
the daily precipitation values, obtained
as the sum of the generated lower level
variables (e.g. hourly), is lower than
the accepted limit da, is not achiev-
able, the sequence is divided into sub-
sequences (randomly), to obtain a plau-
sible sequence. The sequence with dis-
tance smaller than da is further processed
to determine the lower level (hourly) rain-
fall depths through the application of the
proportional adjusting procedure.

Figure 12:
Relationship between intensity and duration of the

observed precipitation events series, identified by the
method using the Pearson correlation coefficient [4]

THE HYETOS SOFTWARE SYSTEM

The disaggregation model described above
is implemented in software Hyetos [12] [13].
It supports both the original version of the
Bartlett-Lewis Rectangular Pulse model and
the modified version. For practical reasons,

the model implementation is specified for the
daily higher level and the hourly lower level
scales, although the methodology described
above can also be used with other time scales.
In this work, the tests are carried out using the
package HyetosR, an updated version of the
software Hyetos, developed in R programming
environment (http://cran.r-project .org). The
Hyetos software can operate in the following
modes:

Disaggregation test mode (without input).
An initial sequence of precipitation events
is generated using the Bartlett-Lewis
model with pre-fixed parameters. The ob-
tained data are aggregated to an hourly
and daily scale, and the latter are used
as source data for the disaggregation in
hourly time scale. This mode can be
useful to test the model and compare
the statistics of the original and disaggre-
gated data.

Full test mode (with hourly input). The ob-
served hourly data must be provided as
an input to the model. Unlike the mode
1, the original sequence is read from the
file rather than generated. This operation
mode can be useful to verify the reliabil-
ity of the Bartlett-Lewis model parameters
obtained from the model calibration, by
comparing the statistics of the observed
data with those of the disaggregated data.

Operational mode (with daily input). It is
very similar to mode 2, but the input data
are only daily. This is the ordinary opera-
tion mode.

Rainfall model test mode (with hourly input).
It is very similar to mode 2, but the ob-
tained hourly data are not derived from
the disaggregation of observed daily data:
they are generated by the Bartlett-Lewis
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model with fixed parameters. The adjust-
ment function must be disabled in the soft-
ware to use this operation mode and the
distance d defined by (7) must have a very
large value (e.g. 1000). This mode is
appropriate for testing how the Bartlett-
Lewis model fits the observed data in
terms of several statistics.

Simple rainfall generation mode (without in-
put and disaggregation). This mode is
similar to mode 4, but without input data.
This operation mode is used to gener-
ate rainfall series using the Bartlett-Lewis
model with the fixed parameters without
performing any disaggregation.

IDENTIFICATION OF INDEPENDENT
EVENTS OF PRECIPITATION

To identify the ranges of variability of the pa-
rameters of the Bartlett-Lewis model, from the
physical point of view, and thus to characterize
duration and intensity of single rainfall events,
the identification of minimum interval of no rain
that ensures the independence of subsequent
events represents a crucial issue. To this aim,
in this work, three of the most well-known lit-
erature methods are selected. The first one is
the “coefficient of variation” method [19]. In this
method, the occurrence of precipitation events
is characterized by a Poisson process of pa-
rameter λ (Appendix Proportional adjusting pro-
cedure). The interarrival time between succes-
sive independent precipitation events, indicated
with ts, is exponentially distributed with param-
eter λ. In fact, note that the derivative of the
cumulative distribution function

F (ts) = P (Ts ≤ ts) = 1− e−λts (30)

is the probability density function as follows.

f(ts) =
dF

dts
= λe−λts (31)

This probability distribution function for the
interarrival time is exponential distribution.
Therefore the interarrival times of a Poisson
process are independent and exponentially dis-
tributed with a mean of 1

λ and variance equal
to 1

λ2 . As known, in the case of an exponential
distribution mean and standard deviation of the
sample assume the same value, and therefore
the coefficient of variation is equal to one.

µ =
1

λ
(32)

σ2 =
1

λ2
(33)

CV =
σ

µ
= 1 (34)

This information can be used to identify inde-
pendent precipitation events. the time between
the end of an event and the beginning of sub-
sequent independent one is well described by
an exponential distribution, such as the interar-
rival time, because for a Poisson process ex-
ponentially distributed, the starting point of the
time of arrival is arbitrary. However, not all peri-
ods without precipitation occurring in nature are
exponentially distributed. The periods without
precipitation, are analyzed progressively elimi-
nating from the entire sample the period without
precipitation respect to a specified time t. At
each step is calculated the coefficient of varia-
tion of the remaining periods without precipita-
tion. The sample containing values greater or
equal to t, which has a coefficient of variation
equal to one, determines the minimum time be-
tween independent precipitation events, tb min.
The second method to detect statistically inde-
pendent precipitation events is based on the
Pearson correlation coefficient [7]. This coeffi-
cient is calculated between the series of precip-
itation under consideration and the same series
of precipitation shifted by a specified time t. As
minimum time between independent precipita-
tion events, tb min, is chosen time t for which
the Pearson correlation coefficient is less than
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Seasons tb(h) tb min(h) Average duration Average intensity Height of average Average duration
of the event(h) of the event(mm/h) precipitation event(mm) of interarrival

time of events(h)

(1)

Autumn 92.65 17 24.20 1.12 28.14 116.85
Winter 55.06 11 23.11 0.87 24.51 78.17
Spring 98.28 23 33.87 0.89 28.22 132.15

Summer 184.71 23 17.23 1.37 14.94 201.94

(2)

Autumn 89.33 15 22.50 1.13 26.93 111.83
Winter 57.13 12 24.74 0.85 25.68 81.87
Spring 74.70 14 18.81 1.14 19.96 93.51

Summer 101.09 3 3.33 2.03 7.81 104.42

(3)

Autumn 92.65 6 11.57 1.26 17.93 104.22
Winter 55.05 6 15.79 0.93 18.84 70.84
Spring 53.60 6 11.02 1.23 14.48 64.62

Summer 184.71 6 5.11 1.86 9.26 189.82

Table 8
Average characteristics of the events for the precipitation of San Martino Valle Caudina on season scale according to: (1) method of

the coefficient of variation; (2) method using the Pearson correlation coefficient; (3) method of Huff.

10%.
The third method used is the method of Huff
which assumes equal to 6 hours the minimum
time span without precipitation identifying inde-
pendent precipitation events [6]. This method
has been used to completeness since, along
with the two methods presented above, it is the
most used method in the literature, but less ac-
curate because it does not take into account
neither of seasonal characteristics nor of cli-
matology of the study area.
In Table 8 are reported the average interval of
no rain, tb; the minimum time for the identifi-
cation of independent rain events, tb min; the
average duration of the event; the average in-
tensity of the event; the average height of the
precipitation event; the average duration of the
interarrival time of the events. It refers respec-
tively to the method of the coefficient of varia-
tion, the method using the Pearson correlation
coefficient and the method of Huff. Although in
many works of literature is preferred a subdi-

vision on a monthly scale, in this work a sea-
sonal scale is adopted. The main reason for
this choice lies in the possibility to have richer
data sets despite the only 12 years available,
while preserving the main physical dynamics of
rainfall events.
The first two methods ensure that tb min is suf-
ficiently long so that it becomes statistically in-
significant for the autocorrelation of precipita-
tion. However, select a very long tb min it may
be useful to ensure the identification of statis-
tically independent events, but, in turn, has a
negative effect on the properties of the pre-
cipitation event, creating large distances intra-
event and leading to a strong bias of the av-
erage duration and the average intensity of
the event [19], as shown in the table below.
Both approaches are able to define a consis-
tent seasonal pattern. In winter, the average
interval between events is comparable (55.06 h
vs.57.13 h) with events of a duration of about
24 hours (23.11 h vs.24.74 h) and intensity less
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than a millimeter per hour (0.87 mm/h vs.0.85
mm/h). In the intermediate seasons, the time
interval between independent events grows but,
while according to the method of the coefficient
of variation is for both seasons close to 4 days,
the Pearson autocorrelation coefficient identi-
fies, as a time interval between independent
events for spring, a value slightly greater than
3 days. This difference also causes significant
changes in the estimate of the average duration
of the event that, for the spring, passes from
almost 34 hours to about 19 hours with the re-
spective intensity which increased from 0.89 to
1.14 mm/h. For autumn the two methods return
similar estimations with comparable duration
and intensity (24.20 h vs 22.50 h e 1.12 mm/h
vs 1.13 mm/h). The difference observed in the
average duration of the event in the spring, can
be used to identify one of the limitations of the
method of the coefficient of variation: in order
to ensure, during the dryer season, larger time
intervals between independent events, it is pos-
sible to overestimate the average duration of the
event not physically based. In this perspective,
the second method seems to be able to return
estimates in line with the expected ones. This
consideration is even more interesting for the
summer season where the method of the co-
efficient of variation identified in 185 hours, the
average duration of time in the absence of pre-
cipitation (tb) compared with a minimum time
between independent rainfall events (tb min) of
23 hours. Instead, the method using the Pear-
son correlation coefficient, currency in 101.09
hours tb in front of a tb min of 3 hours. The
dynamics of such events in the summer sea-
sons, often linked to convective dynamics and
then with short but intense phenomena, lead
to consider, in this case, more reliable estimate
returned by the second method. For the rest,
in line with the observations carried out in Sec-
tion Phenomenological explanation of the parame-
ters of the Random Parameter Bartlett-Lewis Rect-

angular Pulse model , higher cumulative values
occur during the autumn and winter that iden-
tify the average season, while in the dry season
decreases both the number of events and the
heap. In Figures 13-15 intensity-duration rela-
tionship are displayed . In these figures, two
points clearly show a different behavior: the
first, shown in blue, is relative to the Cervinara
landslide and the second, shown in green, has
similar characteristics to the first one but not
inducing flowslide phenomena.

Figure 13:
Relation between intensity and duration of the observed

precipitation events series, identified by the method of the
coefficient of variation.

Figure 14:
Relationship between intensity and duration of the

observed precipitation events series, identified by the
method using the Pearson correlation coefficient.
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Figure 15:
Relationship between intensity and duration of the events

of the observed precipitation series, identified by the
method of Huff.

TYPICAL ITERATION CYCLE OF EAS
ALGORITHM

A typical iteration cycle of EAS algorithm is
given below.

A random population of boundary points,
P , is generated. It is represented by an
m × n matrix, m > n, where m specifies
is the size of the population and n is the
size of the problem (the number of control
variables).

A simplex S = {x1, x2, ..., xn+1} is defined
by randomly selecting n+ 1 vertices from
the current population P , where x1 corre-
sponds to the best (smallest) value of the
objective function f and xn+1 to the worst
(greatest) one.

The candidate point is the vertex that
maximizes the modified function:

g(xi) = f(xi) + uT (35)

where u denotes a uniform random num-
ber from the interval [0, 1] and T is the
actual current temperature of the system.

A vertex w, the candidate point to be re-
placed, is selected from {x2, ..., xn+1} . A

new point r is generated by reflecting the
simplex away from w according to the rule

r = g + (0.5 + u)(g− w) (36)

where g is the centroid of the subset S −
{w} and u is a uniform random number.

If f(r) < f(w), the new point r replaces
the vertex w. Moreover, if f(r) < f(x1),
a sequence of expansions steps is imple-
mented according to the rule

xnew = g + ϕ[s](r− g) (37)

where ϕ[s] = ϕ[s−1] + u, with ϕ[0] = 1.
The expansion continues as long as the
function value improves, thus accelerat-
ing the local searching procedure. If
f(r) > f(x1), the simplex is contracted
outside as follows:

xnew = g + (0.25 + 0.5u)(r− g) (38)

If either the expansion or the outside con-
traction succeeds, xnew replaces r.

If g(r) > g(w), the reflection point r is
not accepted, the actual temperature is
reduced by a factor λ and the simplex is
contracted inside according to the equa-
tion

xnew = g− (0.25 + 0.5u)(g− w) (39)

If f(xnew) > f(xn+1), i.e. the new point is
worse than the current worst vertex, the
simplex shrinks toward the best vertex x1,
i.e., x

′

i = 0.5(x1 + xi).

If g(r) < g(w), the reflection point r is
accepted even if it worsens the value of
the function. Then a given number of up-
hill movements are implemented accord-
ing to (10). If some upward movement
succeeds, the simplex escapes from the
region of attraction of the current local
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minimum and the new point replaces r.
Otherwise, a random point is generated
on the boundaries of the population P .
This new point replaces r if it improves the
function value, otherwise r is replaced ac-
cording to a mutation probability pm. The
new point is generated as follows:

xnew = c+ dy/ ‖y‖ (40)

where c is the centroid of P , d is the max-
imum Euclidean distance of the elements
of P from the centroid and y is a random
direction in the n-dimensional space.

The algorithm stops if the relative dis-
tance between the current best and worst
function values in P , fmin and fmax re-
spectively, becomes smaller than a given
tolerance ε. The initial temperature is
set equal to fmax − fmin, while it is re-
computed at the beginning of each cycle
so that it never exceeds ξ(fmax − fmin),
where ξ ≥ 1 is a control parameter of the
annealing schedule.
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