
Research Papers
Issue RP0281
June 2017

ASC - Advanced
Scientific Computing
Division

Driving NEMO towards Exascale
Step 3: Performance Analysis of a
Parallel-in-Time PDE Solver - based
on MGRIT Algorithm.

By L. D’Amore
University of Naples Federico &

Fondazione CMCC
luisa.damore@unina.it

V. Mele
University of Naples Federico II

valeria.mele@unina.it

G. Aloisio
University of Salento &

Fondazione CMCC
giovanni.aloisio@unisalento.it

SUMMARY Parallel in Time (PinT) methods have received renewed interest
over the last decade for improving the algorithmic scalability on emerging
computer architectures of time-dependent large scale simulations.
However, a PinT approach may exhibit higher overheads and not
necessarily a space-and-time decomposition leads to a parallel algorithm
with the highest performance. Here we consider MGRIT (MultiGrid-In-Time)
algorithm, which is based on MultiGrid Reduction (MGR). We provide a
mathematical model for analysing performances of MGRIT algorithm, by
determining the benefits arising from the decomposition. A set of matrices
(decomposition, execution and storage) highlights fundamental
characteristics of the algorithm, such as the inherent parallelism, some
sources of overhead and memory occupancy, respectively. The aim of the
proposed performance analysis is to address the algorithmic strong and
weak scaling of MGRIT, regarded as a parallel iterative algorithm
proceeding along the time dimension. The analysis allows us to a-priori
determine the correct number of MGRIT time-levels as well as the suitable
number of processing elements for efficiently implementing the algorithm.

Keywords: PinT, MGRIT, Perfomance Analysis



02

Fo
nd

az
io

ne
C

en
tr

o
E

ur
o-

M
ed

ite
rr

an
eo

su
iC

am
bi

am
en

ti
C

lim
at

ic
i

CMCC Research Papers

INTRODUCTION AND DESCRIPTION
OF THE WORK

The efficient numerical solution of large sys-
tems of discretized partial differential equations
(PDEs), such that describing the ocean circu-
lation models, requires hierarchical algorithms
which ensure a reduction of both short- and
long-frequencies error components. One of the
most important advances during the last three
decades, was due to the multigrid approach be-
cause of its optimal algorithmic scaling for both
parallel communication and number of opera-
tions. The MultiGrid (MGR) algorithm requires
a set of meshes defined on a hierarchy of grids
with different sizes obtained by successive re-
finement. Each iteration typically consists of the
following steps: smooth errors at current grid;
transfer residual to next coarser grid; correct it-
erate using the coarser residual (recursively).
According to the Domain Decomposition ap-
proach, parallelism is introduced by dividing the
spatial domain of interest into subdomains (one
for each processor). Each processor is then
responsible for updating the unknowns associ-
ated within its subdomain only. In particular,
in standard parallel MGR algorithm computa-
tions within a mesh are performed in parallel
and each level in the hierarchy is addressed
one at a time.

One approach to achieve parallelism in time di-
rection is Multigrid-In-Time (MGRIT) algorithm
[7], based on MGR techniques. The MGRIT
algorithm calls a time-stepping solver that uses
coarse time-grids to accelerate convergence to
the solution on the finest time-grid. In a simple
two-level setting, MGRIT is equivalent to the
Parareal method [11], which is perhaps the
most popular parallel-in-time method.

However, to achieve the full benefit of comput-
ing multiple time steps at once, space-and-time

multigrid methods, where time is another di-
mension in the grid, should be considered.

While MGRIT is implemented in the software
package XBraid[13], we are developing a mul-
tilevel parallel algorithm which is based on
PETSc (Portable, Extensible Toolkit for Scien-
tific computing) and fuses the MGRIT algorithm
with the MGR in space methods [3, 6]. PETSc
is characterized by a considerable endowment
of implementations of numerical methods and
algorithms, including those used to solve sys-
tems of linear equations. PETSc is modular,
organized in different levels of abstraction, and
it provides data structures that hide, to the fi-
nal user, the complexity of the interprocess
communications in distributed memory environ-
ments. The tools available in the PETSc soft-
ware library, allow us to implement the multi-
level parallel algorithm which uses:

across the level, the MGRIT algorithm;

within each level, the parallel algebraic
multigrid method.

The aim of the proposed performance analysis
is to address the algorithmic strong and weak
scaling of MGRIT, regarded as a parallel itera-
tive algorithm proceeding along the time dimen-
sion. The performance model in [9], instead,
aims to select the best parallel configuration
(i.e. how much parallelism to devote to space
vs. time). Our aim is to give the MGRIT user
the opportunity of predicting the performance
gain that she/he can achieve when using the
MGRIT approach instead of a time-marching
integrator. We believe that both performance
models could be employed for the successful
implementation of the MGRIT algorithm.

MGRIT ALGORITHM. BASIC IDEA

Throughout this paper, we assume the reader
to have some basic knowledge of geometric



Driving NEMO towards Exascale.

03

Fo
nd

az
io

ne
C

en
tr

o
E

ur
o-

M
ed

ite
rr

an
eo

su
iC

am
bi

am
en

ti
C

lim
at

ic
i

multigrid. In particular, she/he should be fami-
lar with the fundamental principles (smoothing
and coarse-grid correction) and with the recur-
sive definition of multigrid cycles.
We analyze the performance of MGRIT algo-
rithm with respect the parallelization in time di-
mension [9], using results presented in [1, 5], in-
tentionally overlooking the spacial parallelism.
To this aim, we give a brief introduction of
MGRIT algorithm, by using the simplest view-
point based on linear algebra operations.
For simplicity, we focus on a system of Ordi-
nary Differential Equations (ODEs), such as in
the method of lines for approximating a system
of time-dependent PDEs, described as

du(t, xj)

dt
= f(t, u(t, xj)) j = 1, . . . ,M. (1)

with u(0) = u0 and t ∈ [0, T ].
Let ti = iδt, i = 0, 1, ..., N be a Fine-
discretization of [0, T ] with spacing δt = T

N (this
mesh will be called F-grid), and for each xj , let
ui be an approximation of u(ti, xj). This means
that, in order to only highlight the dependence
of u(t, x) on ti, we overcome its dependence
on xj . A numerical approximation of (1) based
on one-step time marching is (see Figure 1):{

u0 := u(0)

ui = Φi(ui−1) + bi, i = 1, 2, ..., N.
(2)

For simplicity, we assume that the model equa-
tions in (1) are linear so that functions Φi (the
so-called propagators) are linear, and we let
Φi ≡ Φ (i.e. Φ does not depend on ti),
i = 1, 2, . . . , N . If we introduce the matrix
A ∈ <N×N where

A =


I 0 · · · 0 0

−Φ I · · · 0 0

0 −Φ · · · 0 0
...

...
...

...
...

0 0 · · · −Φ I

 (3)

the numerical scheme in (2) can also be ex-
pressed as the solution of the following system:

A ·


u0

u1

...
uN

 =


b0

b1
...
bN

 (4)

where b0 = u(0). We denote the system in (4)
as F-grid system.

Figure 1: The role of the function Φ between
two instants.

Let ∆T = mδt, with m > 1, be the step size
of a coarse discretization of [0, T ], such that
tj = j∆T , where j = 0, 1, ..., N∆ and N∆ =
N
m . The Coarse-grid (C-grid) discretization of
(2) is obtained by defining the so-called C-grid
propagators Φ∆ and we get the following C-grid
linear system:

Â ·


u∆0

u∆1

...
u∆N∆

 =


b∆0

b∆1

...
b∆N∆

 (5)



04

Fo
nd

az
io

ne
C

en
tr

o
E

ur
o-

M
ed

ite
rr

an
eo

su
iC

am
bi

am
en

ti
C

lim
at

ic
i

CMCC Research Papers

where Â ∈ <N∆×N∆ is

Â =


I 0 · · · 0 0

−Φ∆ I · · · 0 0

0 −Φ∆ · · · 0 0
...
0 0 · · · −Φ∆ I

 (6)

Note that as N∆ < N , matrix Â has fewer rows
and columns than A.

Parareal algorithm, first introduced in [11],
solves (2) combining the solution on the F-grid
and on the C-grid. It can be viewed as a 2-grid
scheme, as summarized in the following (some
details in [10]):

Parareal algorithm:

1. relax on the F-grid (this operation is called F-
relaxation),

2. project the residual to the C-grid

3. solve the Coarse problem,

4. project the Coarse solution on the corresponding
points in the C-grid,

5. relax again on the F-grid.

MGRIT algorithm extends the Parareal ap-
proach on more grids: this means that MGRIT
uses discretization, relaxation, restriction,
and projection operators for each grid-level,
according to different kinds of cycles (see
Figure 2). The key difference is in a new
relaxation operator called FCF-relaxation (see
Figure 3), summarized as follows:

FCF-relaxation:

1. relax at points that are only on the Finest-grid,

2. relax at points that are only on the Coarse-grid,

3. relax again at points that are only on the Finest-grid.

Figure 2: MGRIT defines V-, W- and F-cycle
versions.

Figure 3: FCF-relaxation.

Let us introduce the following parameters:

l: the current level,

L: the coarsest level,

ml: the coarsening step at each level l,
with m0 = 1

δl: the discretization time step at each
level l, where δl = δl−1 ·ml

Nl: the number of time steps for each l,
with N0 > N1 > ... > NL,

Al: the matrix at level l,

u(l) and b(l): the solution and right hand
side vectors at level l,

RI : the restriction/injection operator from
a level to the coarser one,



Driving NEMO towards Exascale.

05

Fo
nd

az
io

ne
C

en
tr

o
E

ur
o-

M
ed

ite
rr

an
eo

su
iC

am
bi

am
en

ti
C

lim
at

ic
i

P : the ideal interpolation (see [7]) corre-
sponding to an injection from the coarser
level to a finer one, followed by an F-
relaxation with a zero right-hand side (see
[8]).

then MGRIT algorithm can be listed in Figure 4
and detailed in [7].

Figure 4: MGRIT algorithm

A MATRIX-BASED PERFORMANCE
MODEL

The performance model we are going to
introduce takes into account the dependence
relationship among component parts of the
given computational problem, let us say BNr .

(Dependency Group) Let (E , π) be a group and
let πE be a strict partial order relation on E ,
which is compatible with π. We say that any
two elements of E , let us say A and B, are
dependent each other if AπEB, and we write
A ← B. If A does not depend on B we write
A 8 B. The group (E , π) equipped with πE is
called dependency group and it is denoted as
(E , π, πE).

Remark: Since πE is transitive, any two ele-
ments of E , let us sayA andB, are independent
if there is no any relationship between them. In
this case we write A 8 B and B 8 A, or even

A= B.

(Dependency Matrix) Given (E , π, πE), the ma-
trix MD = (di,j), where di,j ∈ (E , π), of size
rD × cD, whose non zero elements are such
that ∀i ∈ [0, rD − 1]

di,j = di,s , ∀s, j ∈ [0, cD − 1] (7)

and ∀i ∈ [1, rD − 1], ∃q ∈ [0, cD − 1] s.t.

di,j ← di−1,q , ∀j ∈ [0, cD − 1], (8)

while the others elements are set equal to zero,
is said the dependency matrix.

Remark: cD is said the concurrency degree of
(E , π, πE) and rD is the said the dependency
degree of E . Matrix MD is unique unless an
exchange between the rows is performed. This
means that rD is well determined.
Concurrency degree measures the intrinsic
concurrency among sub-problems of (E , π, πE).
It is obtained as the number of columns of MD.
Therefore, if there are only non zero elements
(E , π, πE) has the highest intrinsic concurrency.

Let S(BNr ) denote the solution of BNr . Here,
for the sake of simplicity, we assume that
S(BNr ) exists and it is unique.

(Decomposition) Any finite set of computational
problems BNk whereNi < Nr, i = 0, . . . , k, and

k−1∑
i=0

Ni ≥ Nr

and such that BNr ← BNi is called a decom-
position of BNr . BNi denotes a sub-problem of
BNr . A decomposition of BNr is denoted as

Dk(BNr ) = {BN0
, . . . ,BNk−1

} (9)

The set of all the decompositions of BNr is de-
noted as DBNr .



06

Fo
nd

az
io

ne
C

en
tr

o
E

ur
o-

M
ed

ite
rr

an
eo

su
iC

am
bi

am
en

ti
C

lim
at

ic
i

1There is no loss of
generality.

CMCC Research Papers

Remark (Decomposition matrix): In order
to capture interactions among component
parts (or sub-problems) of BNr , we use the
dependency matrix on Dk(BNr ). More pre-
cisely, we introduce the group (Dk(BNr ), gsol)
where gsol is any application between the
solutions S(BNi) and S(BNj ) of two elements
of Dk(BNr ), equipped with the strict partial
order relation πDk(BNr ). Then, we construct
the (unique) decomposition matrix MD cor-
responding to the decomposition Dk(BNr ).
Given Dk(BNr ), cD is the (unique) concurrency
degree of BNr and r

D
is the (unique) depen-

dency degree of BNr . Concurrency degree
measures the intrinsic concurrency among
sub-problems of BNr . If there are not empty
elements, the problem BNr has the highest
intrinsic concurrency.
The decomposition matrix allows us to iden-
tify the concurrency that is available in a
problem and decompose it into parts that
can be executed in parallel. The next step
is to take these parts and assign them (i.e.,
the mapping step) onto the computing machine.

In the literature, an algorithm is any procedure
consisting of finite number of unambiguous
rules that specify a finite sequence of oper-
ations to reach a solution to a problem or a
specific class of problems. Here we define an
algorithm as a proper set of operators which
solves BNr .
Let MP be the reference computing machine
consisting of P ≥ 1 processing elements with
specific logical-operational capabilities.

(Computing Operators) An operator Ij of MP

is the correspondence between <s and <t,
where s, t ∈ N are positive integers.

GivenMP the set without repetitions

CopMP
= {Ij}j∈[0,q−1],

where q ∈ N, characterizes logical-operational
capabilities of the machine .
Finally, we say that operators, properly orga-
nized, provide the solution to BNr , as stated in
the following

(Solvable Problems) BNr is solvable inMP if

∃Dk(BNr ) ∈ DBNr

such that

∀BNj ∈ Dk ∃Ij ∈ CopMP
,

and
Ij [BNj ] = S(BNj )

that is, if it exists any relation

θ : BNj ∈ Dk(BNr ) ∈ DBNr 7−→ Ij ∈ CopMP
.

(10)

In particular, we say that decomposition is
elementary if θ is a function. From now on, we
consider solvable problem BNr and elementary
decompositions Dk(BNr ) ∈ DBNr fixed 1 .

(Algorithm) An Algorithm solving BNr , indi-
cated as ADk(BNr ),MP

is a sequence of ele-
ments (not necessarily distinct) of CopMP

ADk(BNr ),MP
= {Ii0 , Ii1 , ...Iik}

such that

Iik ◦ Iik−1 ◦ ... ◦ Ii0 [BNr ] = S(BNr ),

where

Iij ∈ CopMP
and j ∈ [0, card(CopMP

)− 1]

and such that there is a bijective correspon-
dence

γ : BNν ∈ Dk(BNr ) ∈ DBNr ←→ Iij ∈ ADk(BNr ),MP

(11)



Driving NEMO towards Exascale.

07

Fo
nd

az
io

ne
C

en
tr

o
E

ur
o-

M
ed

ite
rr

an
eo

su
iC

am
bi

am
en

ti
C

lim
at

ic
i

Every sub-sequence of ADk(BNr ),MP
is a sub-

algorithm of ADk(BNr ),MP
.

For simplicity of notations and when there is no
ambiguity, we indicate algorithm briefly asAk,P .

(Equals Algorithms) Two algorithms

Aik,P = {Ii0 , Ii1 , ...Iik}, Ajk,P = {Ij0 , Ij1 , ...Ijk}

are said to be equals if ∀s ∈ [0, k], Iis ≡ Ijs .

Note that two equals algorithms have the same
cardinality.

The number and size of sub-problems into
which a problem is decomposed determines
the granularity of the decomposition. A
decomposition into a large number of small
computational problems is called fine-grained
and a decomposition into a small number
of large computational problems is called
coarse-grained. Here, granularity has a major
consequence in the level of detail that is
required for an algorithm to be analysed with
this approach. However, among the commonly
used decomposition techniques, it is worth
noting that recursive decomposition is the most
suitable for our performance model especially
for a real-world algorithm.

(Granularity set of an Algorithm) Given Ak,P ,
the subset G(Ak,P ) of Ak,P made of distinct
operators of Ak,P defines the granularity set of
Ak,P . Two algorithms

Aik,P = {Ii0 , Ii1 , ...Iik}, Ajk,P = {Ij0 , Ij1 , ...Ijk}

have the same granularity if G(Aik,P ) ≡
G(Ajk,P ).

Let ALBNr (or simply AL) be the set of algo-
rithms that solve BNr , obtained by varyingMP ,

P and Dk(BNr ) ∈ DBNr .
Let associate each algorithm of AL to an el-
ementary decomposition, that is, let introduce
the surjective correspondence

ϕ : Ak,P ∈ AL −→ Dk(BNr ) ∈ DBNr , (12)

which induces on AL an equivalence relation-
ship % of AL in itself, such that

%(Ak,P ) = {Ãk,P ∈ AL : ϕ(Ãk,P ) = ϕ(Ak,P )}.(13)

Therefore, %(Ak,P ) is the set of algorithms of
AL associated with the same decomposition
Dk(BNr ) ∈ DBNr . Hence, % induces the quo-
tient set AL% , whose elements are disjoints and
finite subsets of AL determined by %, that is
they are equivalence classes under %.

In the following we consider A as a represen-
tative of its equivalence class in AL.

(Complexity) The number elements of Ak,P
is said complexity of Ak,P . It is denoted as
C(Ak,P ). That is

C(Ak,P ) := card(Ak,P ) .

Remark: C(Ak,P ) equals to the number of non
empty elements of MD, i.e. the decompo-
sition matrix defined on Dk(BNr ). So, each
algorithm belonging to the same equivalence
class according to % has the same complexity.
An integer is then associated with each ele-
ment %(Ak,P ) of quotient set AL% which induces
an ordering relation between the equivalence
classes in AL

% : therefore there is a minimum
and a maximum complexity for algorithms that
solve the problem BNr . By virtue of the bijective
correspondence γ in (11), it holds that

card(Ak,P ) = card(Dk(BNr )) = k, (14)

∀Ak,P ∈ %(Ak,P ).

Remark (Similar Algorithms): Given BNr ' BNq



08

Fo
nd

az
io

ne
C

en
tr

o
E

ur
o-

M
ed

ite
rr

an
eo

su
iC

am
bi

am
en

ti
C

lim
at

ic
i

2In general cE ≤ P ,
but we can exclude

cases where
dependencies existing
between subproblems
do not allow to use all

the computing units
available, i.e. in which
cE < P , because they
can easily taken back

to the case where
cE = P .

CMCC Research Papers

and their relative similar decompositions
D′ki(BNr ) and D

′′

kj
(BNq ) ki, kj ∈ N, al-

gorithms belonging to ϕ−1(D′ki(BNr )) (see
(12)) are similar to algorithms belonging to
ϕ−1(D

′′

kj
(BNq )).

Remark: Since we can associate operator Iik

of Ak,P to each subproblem according to γ,
operators of A inherit the dependencies that
exist between subproblems of BNr , but not
independencies, because two operators may
depend - for example - on the availability of
computing units ofMP during their execution.

Remark (Execution matrix): we introduce the
group (Ak,P , �, πAk,P ) where πAk,P is the strict
partial order relation between any two elements
of Ak,P that guarantees that two elements can-
not be performed in any arbitrary order and si-
multaneously, that is on two different process-
ing elements of MD. The condition that two
elements cannot be performed in any arbitrary
order induces the inheritance of dependencies
between decomposition subproblems and algo-
rithm operators, while the condition that that two
elements cannot be performed simultaneously
- relating to availability of resources - adds pos-
sible reasons for dependency between opera-
tors, which depend on the machine on which
algorithm A is intended to run. We construct
matrix MD of order rE × cE , where cE = P 2

as dependency matrix (see Definition 3). The
number of columns of this matrix will be the
maximum number of sub-algorithms that can
be performed simultaneously on MP . In the
following, we denote this matrix as execution
matrix and we refer to it by using the symbol
ME = (ei,j) or simply ME . This matrix can
be placed in analogy with the execution graphs
that are often used to describe the sequence
of steps of algorithm A on a given machine for
a particular input or a particular configuration.

Matrix ME is unique unless an exchange be-
tween the rows is performed. This means that
rE is well determined.

In conclusion, by looking at the rows of ME

for determining those that have only one non
empty element and those that have more
that one non empty element, allows us to
distinguish between sequential and parallel
part of Ak,P .

Concurrency degree of BNr provides an upper
limit to the maximum number of independent
sub-algorithms executable simultaneously on
the machine. Dependency degree provides a
lower limit to number of rows of ME .

Let tcalc be the execution time for one floating
point operation. In the following we assume
that

∀Iij ∈ CopMP
, tij = αcalcij · tcalc, αcalcij ∈ <

(15)

(Row execution time) The quantity

Tr(Ak,P ) := max
j∈[0,cE−1]

trj

is said execution time of the row r ofME (which
is a sub-algorithm of Ak,P ).

Let αcalcr := maxj∈[0,cE−1] α
calc
rj then

Tr(Ak,P ) = max
j∈[0,cE−1]

αcalcrj · tcalc = αcalcr · tcalc

(Execution time) The quantity

T (Ak,P ) :=

rE−1∑
r=0

Tr(Ak,P ) (16)

is said execution time of A.

If αcalcsum :=
∑rE−1
r=0 αcalcr then

T (A) = αcalcsum · tcalc .

Remark: Let



Driving NEMO towards Exascale.

09

Fo
nd

az
io

ne
C

en
tr

o
E

ur
o-

M
ed

ite
rr

an
eo

su
iC

am
bi

am
en

ti
C

lim
at

ic
i

rseq ≤ rE denote the number of rows of
ME with only one non-empty element (se-
quential sub-algorithms of Ak,P ).

rpar = rE − rseq, with rpar ≤ rE , denote
the number of rows of ME with more than
one non empty element.

Within the sequence i = 0, . . . , rE − 1, num-
bering the rE rows of ME , two subsequences
of indices come out: {iq}q∈[0,rseq−1], and
{ir}r∈[0,rpar−1]

(Execution time) The quantity

Tpar(Ak,P ) :=

rpar−1∑
r=0

Tir (Ak,P ) (17)

is said execution time of Ak,P .

(Sequential Execution time) The quantity

Tseq(Ak,P ) :=

rseq−1∑
iq=0

Tiq (Ak,P ) (18)

is said sequential execution time of Ak,P .

Equation (16) can be written as

T (Ak,P ) = Tseq(Ak,P ) + Tpar(Ak,P ) . (19)

Expression (19) states that, by looking at
matrix ME , the model allows to immediately let
know how much large are the parallel and the
sequential parts of execution time of Ak,P .

Given Ak,P with P > 1 and ME of order NE
P =

rEP ×P , let Sp(Ak,P ) denote speedup of Ak,P ,
that is

Sp(Ak,P ) :=
T (Ak,1)

T (Ak,P )
(20)

Let tcalc be the execution time for one floating

point operation. In the following we assume
that

∀Iij ∈ CopMP
, tij = αcalcij · tcalc, αcalcij ∈ <

(21)

(Row execution time) The quantity

Tr(Ak,P ) := max
j∈[0,cE−1]

trj

is said execution time of the row r ofME (which
is a sub-algorithm of Ak,P ).
Let αcalcr := maxj∈[0,cE−1] α

calc
rj then

Tr(Ak,P ) = max
j∈[0,cE−1]

αcalcrj · tcalc = αcalcr · tcalc

If αcalcsum :=
∑rE−1
r=0 αcalcr then

T (A) = αcalcsum · tcalc .

Remark: Let

rseq ≤ rE denote the number of rows of
ME with only one non-empty element (se-
quential sub-algorithms of Ak,P ).

rpar = rE − rseq, with rpar ≤ rE , denote
the number of rows of ME with more than
one non empty element.

Theorem 1 Let

Rcalc(Ak,P ) :=
αcalcsum

rE
≥ 1 .

Rcalc is the parameter of the algorithm A depend-
ing on the most computationally intensive sub algo-
rithms of A. It holds

T (Ak,P ) = Rcalc(Ak,P ) · rE · tcalc (22)

Following result shows that the execution time
of Ak,P is bounded below by the problem de-
pendence degree.

Theorem 2 If cE = 1 (i.e. Ak,P is sequential), it is



10

Fo
nd

az
io

ne
C

en
tr

o
E

ur
o-

M
ed

ite
rr

an
eo

su
iC

am
bi

am
en

ti
C

lim
at

ic
i

CMCC Research Papers

1. C(Ak,P ) = rE ,

2. T (Ak,P ) = C(Ak,P ) ·Rcalc(Ak,P ) · tcalc .

Next result formally states that if BNr is fully
decomposed, the execution time of a fully
parallel algorithm Ak,P ∈ ALBNr on MP is P
times smaller than the execution time of Ak,1
on M1 where M1 and MP differ only on the
number of processing units.

Theorem 3 ∀BNr fully decomposed and ∀Ak,P
perfectly parallel algorithm that solves it on MP

with P > 1, if

CopM1
≡ CopMp

, XopM1
≡ XopMp

,

it follows that:

T (Ak,P ) =
T (Ak,1)

P
·Rcalc(Ak,P ) ·tcalc . (23)

Theorem 4 For matrices ME of algorithms in
%(Ak,P ), it holds

cE ≤ cD (24)

and

rE ≥ rD. (25)

Moreover, let us consider Aik,P and Ajk,P two algo-
rithms belonging to %(AAk,P ), and their matrices
M i
E and M j

E . We have:

ciE < cjE ⇒ riE ≥ r
j
E;

ciE > cjE ⇒ riE ≤ r
j
E .

Theorem 5 It holds that

T (Ak,P ) ≥ rD ·Rcalc(Ak,P ) tcalc , (26)

and it assumes its minimum value when rE = rD.

Remark: The minimum execution time is
proportional to dependency degree of BNr ,
that is when the number of computing units is
equal to concurrency degree of BNr .

Theorem 6 It holds

T (Ak,P ) = (rseq + rpar) ·Rcalc(Ak,P ) · tcalc .

(27)

Let Q denote the cost of Ak,P . The cost is de-
fined as the product of the execution time and
the number of processors utilized. It follows that

Theorem 7 It holds

Q(Ak,P ) = cE · rE ·Rcalc(Ak,P ) · tcalc . (28)

Theorem 8 It holds

Sp(Ak,P ) =
C(Ak,1)

rEAk,P ·
Rcalc(Ak,1)
Rcalc(Ak,P )

. (29)

Remark: If Ak,P is perfectly parallel than
Sp(Ak,P ) = cE .

PERFORMANCE ANALYSIS OF MGRIT
ALGORITHM

Let Φ(M, δl) be the subproblem of evaluating
Φ and φ(M, δl) the operator to solve it: all
the most time consuming operators in the
MGRIT algorithm involve the Φ evaluation.
Execution time of φ(M, δl) depends on the
size of the spacial grid, i.e. the set (xj)j=1,M ,
and on the step size of discretization in time
direction, i.e. δl. In this work we assume M

be fixed. This means that we may assume
that the execution time of φ is fixed. We com-
pletely overlook the accuracy of the results,



Driving NEMO towards Exascale.

11

Fo
nd

az
io

ne
C

en
tr

o
E

ur
o-

M
ed

ite
rr

an
eo

su
iC

am
bi

am
en

ti
C

lim
at

ic
i

since it strictly depends on the character-
istics of Φ. For the sake of brevity we face
here only the V-Cycle, as described in Figure 4.

LetNFl := Nl−Nl+1 be the number of F-points
and Nl+1 be the number of C-points at each
level l of MGRIT algorithm. As described in
Figure 4, we note that if L is the coarsest level,
and the solver of the system on the coarsest-
grid is sequential, it will involve at least one
φ(M, δL)-execution for each time step on the
L-th grid. It means that if L is the coarsest level
there are NL executions of φ(M, δL).
Otherwise, for each level l < L,

the FCF-relaxation involves

1. NFl F-relaxations (or φ(M, δl)-
executions), which can be per-
formed in parallel,

2. Nl+1 C-relaxations (or φ(M, δl)-
executions), which can be per-
formed in parallel,

3. NFl F-relaxations (or φ(M, δl)-
executions), which can be per-
formed in parallel,

computing the residual requires one
φ(M, δl)-execution for each time step on
the (l+ 1)-th grid, that is Nl+1, which can
be performed in parallel,

the ideal interpolation requires NFl
F-relaxations (or φ(M, δl)-executions),
which can be performed in parallel.

Let us introduce the matrix MD, which is the
so-called dependency matrix of the time-space
problem to solve, according to its decom-
position in the space subproblems Φ(M, δi),
for i = 1, . . . , L, and j = 1, . . . , Np where
Np ∈ {NFl , Nl+1, NL}.

The concurrency degree of the problem decom-
posed in this way is the number of columns of
MD, i.e. the maximum number of simultane-
ous Φ evaluations, that is

cD = max{NF0
, N2}

To get the dependency degree we need rD, i.e.
the number of rows ofMD. We have:

3 rows for each FCF-relaxation, that
means 3 · (L− 1) rows,

1 row for each residual computation, that
means L − 1 rows (this are the longest
rows in the matrix, that is with the biggest
numbers of columns),

NL − 1 rows for the coarsest-grid solver,

1 row for each ideal interpolation (F-
relaxation), that means L− 1 rows.

So, rD = 5 · (L− 1) +NL − 1.

Consider now a computing architecture with
P processing elements, where P = cD

np where
np ∈ N and P ≤ NL. These conditions state
that the points on the finest grid are equally
distributed among the processors, that is cD

is multiple of P and that on the coarsest grid
each processors holds at least one point.
We define the execution matrix of MGRIT
made of the operators φ(M, δi)

k
j , where

i = 1, . . . , L, j = 1, ...P . k = 1, . . . , Npl and
Npl ∈ {NFlP , Nl+1

P , NL} . The matrix is defined
considering that, for each level, the number
of points of the grid is a multiple of P . This
is without loss of generality, as otherwise the
number of rows is still the same, just with some
empty elements.
Consider the algorithm, let us say Aseq, which
solves (2) with the same discretization in
time on the finest grid but without introducing
MGR or any parallelism. Aseq is made of N0



12

Fo
nd

az
io

ne
C

en
tr

o
E

ur
o-

M
ed

ite
rr

an
eo

su
iC

am
bi

am
en

ti
C

lim
at

ic
i

CMCC Research Papers

executions of φ(M, δ1), leading to the execution
matrix E1 with one column and N0 rows. We
prove that

Proposition: Let execute MGRIT algorithm on a
computing architecture with P < NL process-
ing elements, where P = N0

np and np ∈ N. Let
tφ be the execution time of φ(M, δl), ∀l ∈ [1, L].
Then the speed-up S(MGRIT,Aseq) of MGRIT
with respect to Aseq is bounded above as fol-
lows:

S(MGRIT,Aseq) ≤
N0

5 · (L− 1) +NL − 1
(30)

Proof: The MGRIT execution matrix (37) has P
columns and

rEP =

L−1∑
l=1

(
3 · NFl

P
+ 2 · Nl+1

P

)
+NL − 1 ≥

≥ rD = 5 · (L− 1) +NL − 1

rows, since it consists of

L− 1 FCF-relaxations with:

1. NFl
P rows for F-relaxation,

2. Nl+1

P rows for C-relaxation,

3. NFl
P rows for F-relaxation,

Nl+1

P rows for each l < L residual compu-
tation,

NL−1 rows for the solver on the coarsest-
grid,

NFl
P row for each ideal interpolation (F-

relaxation), i.e. L− 1 rows.

It means that execution time of MGRIT is

TP (MGRIT ) = rEP · tφ (31)

where the r.h.s. of (31) is

L−1∑
l=1

(
3 · NFl

P
+ 2 · Nl+1

P

)
+NL − 1 . (32)

As E1 has N0 rows, the execution time of the
sequential-in-time algorithm is

T1(Aseq) = N0 · tφ (33)

Thus it holds that

S(MGRIT,Aseq) =
rE1 · tφ
rEP · tφ

(34)

where the r.h.s. of (34) is

N0∑L−1
l=1

(
3 · NFlP + 2 · Nl+1

P

)
+NL − 1

(35)

and the (30) follows.

Main outcome of (30) and (32) is to give a-priori
estimate of the maximum number of multigrid
levels and the number of processors to allo-
cate in order to efficiently implement the itera-
tive MGRIT algorithm. This analysis is carried
out regardless the execution of φ. Indeed, this
operation could be performed in parallel or se-
quentially in space and such choice only affects
the unit time tφ.

DISCUSSION AND FUTURE WORK

The aim of the proposed performance anal-
ysis is to address the algorithmic strong
and weak scaling of MGRIT, regarded as a
parallel iterative algorithm proceeding along
the time dimension. The performance model
in [9], instead, aims to select the best parallel
configuration (i.e. how much parallelism
to devote to space vs. time). We believe
that both models could be employed for
the successful implementation of the MGRIT
algorithm instead of a time-marching integrator.

We are currently set up the PETSc objects



Driving NEMO towards Exascale.

13

Fo
nd

az
io

ne
C

en
tr

o
E

ur
o-

M
ed

ite
rr

an
eo

su
iC

am
bi

am
en

ti
C

lim
at

ic
i

and the operators of the structure that is Inter-
polation, Restriction, Smoothers, and Coarse-
solver for performing numerical experiments
in order to validate the previous analysis. In
the linear case, the scalable linear equations
solvers (KSP) component provides an easy-to-
use interface to the combination of a Krylov
subspace iterative method and a preconditioner
(in the KSP and PC components, respectively)
or a sequential direct solver. Then we’ll build
and validate the MGRIT algorithm for the non-
linear case, using the SNES components. The
idea is to introduce, at the end, a new level of
parallelism along the space dimensions, han-
dled separately from the time one.

Finally, we will also consider the memory ac-
cesses matrix for taking into account the com-
munications that significantly affect the soft-
ware speed up and limit the real number of pro-
cessors and the number of grid levels to use.

APPENDIX

MD =



Φ(M, δ0)1 Φ(M, δ0)2 · · · Φ(M, δ0)NF0

Φ(M, δ0)1 Φ(M, δ0)2 · · · Φ(M, δ0)N1

Φ(M, δ0)1 Φ(M, δ0)2 · · · Φ(M, δ0)NF0

Φ(M, δ0)1 Φ(M, δ0)2 · · · Φ(M, δ0)N1

Φ(M, δ1)1 Φ(M, δ1)2 · · · Φ(M, δ1)NF1

Φ(M, δ1)1 Φ(M, δ1)2 · · · Φ(M, δ1)N2

Φ(M, δ1)1 Φ(M, δ1)2 · · · Φ(M, δ1)NF1

Φ(M, δ1)1 Φ(M, δ1)2 · · · Φ(M, δ1)N2

Φ(M, δ2)1 Φ(M, δ2)2 · · · Φ(M, δ2)NF2

Φ(M, δ2)1 Φ(M, δ2)2 · · · Φ(M, δ2)N3

Φ(M, δ2)1 Φ(M, δ2)2 · · · Φ(M, δ2)NF2

Φ(M, δ2)1 Φ(M, δ2)2 · · · Φ(M, δ2)N3

...
... · · ·

...
Φ(M, δL)2

...
Φ(M, δL)NL

...
... · · ·

...
Φ(M, δ2)1 Φ(M, δ2)2 · · · Φ(M, δ2)NF2

Φ(M, δ1)1 Φ(M, δ1)2 · · · Φ(M, δ1)NFl
Φ(M, δ0)1 Φ(M, δ0)2 · · · Φ(M, δ0)NF0


(36)

EP =



φ(M, δ0)11 φ(M, δ0)12 · · · φ(M, δ0)1P
...

... · · ·
...

φ(M, δ0)

NF0
P

1 φ(M, δ0)

NF0
P

2 · · · φ(M, δ0)

NF0
P

P

φ(M, δ0)11 φ(M, δ0)12 · · · φ(M, δ0)1P
...

... · · ·
...

φ(M, δ0)
N1
P

1 φ(M, δ0)
N1
P

2 · · · φ(M, δ0)
N1
P

P

φ(M, δ0)11 φ(M, δ0)12 · · · φ(M, δ0)0P
...

... · · ·
...

φ(M, δ0)

NF0
P

1 φ(M, δ0)

NF0
P

1 · · · φ(M, δ0)

NF0
P

P

φ(M, δ0)11 φ(M, δ0)12 · · · φ(M, δ0)1P
...

... · · ·
...

φ(M, δ0)np
1 φ(M, δ0)np

2 · · · φ(M, δ0)np
P

φ(M, δ1)11 φ(M, δ1)12 · · · φ(M, δ1)1P
...

... · · ·
...

φ(M, δ1)

NF1
P

1 φ(M, δ1)

NF1
P

1 · · · φ(M, δ1)

NF1
P

P

φ(M, δ1)11 φ(M, δ1)12 · · · φ(M, δ1)1P
...

... · · ·
...

φ(M, δ1)
N2
P

1 φ(M, δ1)
N2
P

1 · · · φ(M, δ1)
N2
P

P

φ(M, δ1)11 φ(M, δ1)12 · · · φ(M, δ1)1P
...

... · · ·
...

φ(M, δ1)

NF1
P

1 φ(M, δ1)

NF1
P

2 · · · φ(M, δ1)

NF1
P

P

φ(M, δ1)11 φ(M, δ1)11 · · · φ(M, δ1)1P
...

... · · ·
...

φ(M, δ1)
N1
P

1 φ(M, δ1)
N1
P

2 · · · φ(M, δ1)
N1
P

P

...
... · · ·

...
φ(M, δL)21

...
φ(M, δL)

NL
1

...
... · · ·

...
φ(M, δ1)11 φ(M, δ1)12 · · · φ(M, δ1)1P

...

φ(M, δ1)

NF1
P

0 φ(M, δ1)

NF1
P

1 · · · φ(M, δ1)

NF1
P

P

φ(M, δ0)11 φ(M, δ0)12 · · · φ(M, δ0)1P
...

φ(M, δ0)

NF0
P

1 φ(M, δ0)

NF0
P

2 · · · φ(M, δ0)

NF0
P

P


(37)



14

Fo
nd

az
io

ne
C

en
tr

o
E

ur
o-

M
ed

ite
rr

an
eo

su
iC

am
bi

am
en

ti
C

lim
at

ic
i

CMCC Research Papers

Bibliography

[1] R. Arcucci, L. D’Amore, V. Mele Mathematical Ap-
proach to the Performance Evaluation of Three Dimen-
sional Variational Data Assimilation, AIP Proceedings
2017.

[2] S.Balay, S. Abhyankar,M. F. Adams, J. Brown, P.
Brune, K. Buschelman, V. Eijkhout, W. D. Gropp,
D. Kaushik, M. G. Knepley, L. Curfman McInnes,
K. Rupp, B. F. Smith, H. Zhang, PETSc Web Pages
http://www.mcs.anl.gov/petsc.

[3] L. Carracciuolo, L. D’Amore, V. Mele. Toward a fully
parallel Multigrid in Time algorithm in PETSc environ-
ment: a case study in ocean models, in IEEE Pro-
ceedings of International Conference on High Perfor-
mance Computing & Simulation (HPCS) 2015, Am-
sterdam, pp. 595-598, 2015.

[4] L. Carracciuolo, L. D’Amore, A. Murli, Towards a par-
allel component for imaging in PETSc programming envi-
ronment: A case study in 3-D echocardiography Parallel
Computing, vol 32, n. 1, pp. 67-83, 2006.

[5] L. D’Amore, V. Mele, G. Laccetti, A. Murli. Mathemat-
ical Approach to the Performance Evaluation of Matrix-
matrix Multiply Algorithm on a Two Level Parallel Archi-
tecture, LNCS 9574, Springer, pp. 25-34, 2016.

[6] L. D’Amore, A. Murli, V. Boccia, L. Carracciuolo, In-
sertion of PETSc in the NEMO stack software driving
NEMO towards exascale computing, International Con-
ference on High Performance Computing and Simu-
lation (HPCS), 2014, pp.724,731, 21-25 July 2014.

[7] R. D. Falgout, S. Friedhoff, Tz. V. Kolev, S. P.
MacLachlan, and J. B. Schroder, Parallel Time In-
tegration with Multigrid, SIAM Journal on Scientific
Computing, vol. 36, n. 6, pp. C635-C661, 2014.

[8] R. D. Falgout,S. Friedhoff, Tz. V. Kolev, S. P.
MacLachlan, and J. B. Schroder, S. Vande-
walle, Multigrid methods with space-time concurrency,
SIAM Journal on Scientific Computing, LLNL-JRNL-
678572, submitted.

[9] H. Gahvari, V. A. Dobrev, R. D. Falgout, T. V. Kolev,
J. B. Schroder, M. Schulz, U. Meier Yang (2016).
A performance model for allocating the parallelism in
a multigrid-in-time solver. In Proceedings of the 7th
International Workshop on Performance Modeling,
Benchmarking and Simulation of High Performance
Computing Systems). IEEE Press, Piscataway, NJ,
USA, 22-31.

[10] M. J. Gander, S. Vandewalle,Analysis of the parareal
time-parallel time-integration method, SIAM J. Sci.
Comput., 29 (2007), pp. 556-578.

[11] J.-L. Lions, Y. Maday, G. Turinici, A parareal in
time discretization of PDEs, Comptes Rendus de
l’Academie des Sciences - Series I - Mathemat-
ics, vol. 332, pp. 661-668, 2001. Available at:
http://dx.doi.org/10.1016/S0764-4442(00)01793-6

[12] B. Smith, The portable extensible toolkit for scientific
computing, 2013, Lectures at the The Argonne Train-
ing Program on Extreme-Scale Computing, August
2013.

[13] XBraid: Parallel multigrid in time.
http://llnl.gov/casc/xbraid.

c© Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici 2017

Visit www.cmcc.it for information on our activities and publications.

The Foundation Euro-Mediterranean Center on Climate Change has its registered office and
administration in Lecce and other units in Bologna, Venice, Capua, Sassari, Viterbo and Milan. The
CMCC Foundation doesn’t pursue profitable ends and aims to realize and manage the Centre, its
promotion, and research coordination and different scientific and applied activities in the field of climate
change study.


