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SUMMARY  
This technical report describes the new Seasonal Prediction System 
developed at CMCC to perform seasonal forecasts operationally (CMCC-
SPS3). A more realistic representation of the Climate System 
components such as the ocean, the sea ice, the snow cover, the soil 
moisture and the stratosphere is crucial to obtain reliable forecasts at the 
sub-seasonal to seasonal time-scale. This new Seasonal Prediction 
System currently operational at the Euro-Mediterranean Center on 
Climate Change was indeed developed with the aim of achieving 
enhanced predictive skill in a variety of different aspects. In comparison 
to the previous system (SPS2), the new model has a completely different 
dynamical core, based on the new CMCC Earth System Model (Fogli and 
Iovino, 2014). The new system features a better horizontal resolution of 
both the atmospheric and oceanic components, better representation of 
the stratosphere, more realistic initialization procedures for atmosphere, 
land, sea and ice modules and a larger ensemble size (50 members). 
Such improvements have a positive impact on the climate and on the 
predictive skill of the new system. After a brief description of each system 
component, the initialization strategy is discussed along with the main 
characteristics of the forecast system from a technical point of view. An 
analysis of its climate and of the forecasting skill is presented for the 24-
year re–forecast period 1993–2016. The technical report is concluded 
with a preliminary attempt of comparison of the SPS3 overall 
performances with both SPS2 and other Seasonal Prediction Systems.  
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1. INTRODUCTION 
The Euro-Mediterranean Center on Climate Change (CMCC) has developed a 

multi-year experience in Seasonal Forecasting. Since the turn of this century, a 

seasonal forecasting system has been operated by CMCC in research mode, and in 

particular within the DEMETER project (1999–2003). This System was originally based 

on the SINTEX model (Gualdi et al., 2003), implemented at a T42 horizontal resolution 

and with 19 vertical levels. The initial conditions were obtained from forced integrations 

of the atmospheric (AMIP-like runs) and oceanic (OMIP-like runs) components. This 

Seasonal Prediction System contributed to the DEMETER Multi Model Ensemble 

(Palmer et al., 2004) and sensitivity experiments were carried out to assess its 

performance in predicting ENSO (Gualdi et al., 2005). 

Since May 2014, the second version (SPSv2, Materia et al., 2014; Athanasiadis et 

al., 2014) of the CMCC seasonal forecasting system has become fully operational in 

the framework of the CLIMAFRICA EU-Project (2010-2014). Since then, forecast 

products (from an ensemble of nine members) are delivered on a monthly basis (by the 

15th of each month) to the Asian Pacific Climate Centre, South Korea (APCC, 

http://www.apcc21.org/eng/index.jsp), where they contribute to a multi model ensemble 

system (which includes NCEP, NASA, POAMA and two Canadian seasonal forecasting 

models) to generate global seasonal forecasts for a wide variety of users (Min et al., 

2014). 

Finally, since the 1st of July 2016, CMCC has started delivering Pre-Operational 

Global Seasonal Predictions to Copernicus C3S, as part of the Copernicus 

C3S_433_LOT2 Contract (the so-called POP Phase). 

The fully coupled atmosphere-land-ocean-ice model at the heart of the currently 

operational system, the CMCC-SPS3 which is the object of this Technical Report, is 

based on the CMCC–CM2 coupled model (Fogli and Iovino, 2014). This, in turn, 

consists of several independent model components simultaneously simulating the 
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Earth’s atmosphere, ocean, land, land and sea ice, together with a central 

coupler/driver component that controls data synchronization and exchange. 

 

Figure 1.  Scheme of the CMCC-SPS3 fully coupled Climate Model 

The system can be configured in a number of different ways from both a scientific 

and technical perspective and can be efficiently run on various hardware platforms. It 

supports many resolutions and has the flexibility to set up simulations with different 

component configurations and parallel decompositions, which allows it to be run from a 

single atmosphere-only model in stand-alone forced configuration to the fully 

interactive coupled system. 

The global model components can be combined in numerous ways, according to 

the different user’s need and science perspectives. In the general framework of the 
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seasonal forecast structure, the model is set in transient, fully-coupled configuration, 

with annually-varying greenhouse gases as established by the CMIP5 protocol 

(scenario RCP8.5 after 2005, see IPCC 2013). 

Figure 1.1 shows a schematic of the CMCC–CM2 model components. The CMCC-

CM2 atmospheric, land surface and sea ice models are based on the Community Earth 

System Model version 1.2.2 and a detailed description is given in Hurrell et al. (2013) 

and references therein. The ocean component is the European model Nucleus for 

European Modelling of the Ocean (NEMO), in its 3.4 version (for a detailed description, 

see Madec et al., 2008). 

The purpose of this report is to provide, in addition to a description of the system 

and of its components, a preliminary, although fairly complete, assessment of the 

quality of the CMCC-SPS3 forecasting system, both in terms of model climate and of 

forecast performance. 

2. SYSTEM COMPONENTS 

2.1  ATMOSPHERE 
The atmospheric component of CMCC-SPS3 is the Community Atmosphere Model 

version 5 (CAM5.3, see Neale et al., 2010 for a description of the model macrophysics) 

which can be configured to use a spectral transform, a finite volume or a finite 

elements dynamical core. The atmosphere implemented in the CMCC-SPS3 runs in 

the spectral element configuration (a formulation of the finite element method that uses 

high degree hybrid polynomials as basis functions, Patera 1984), with a horizontal 

resolution of about 110 km, 46 vertical levels up to about 0.3 hPa and an integration 

time-step of 30 minutes. 

A description of the treatment for stratiform cloud formation, condensation, and 

evaporation macrophysics is given in Neale et al. (2012). A two-moment microphysical 

parameterization (Morrison and Gettelman, 2008; Gettelman et al. 2008) is used to 
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predict the mass and number of smaller cloud particles (liquid and ice), while the mass 

and number of larger-precipitating particles (rain and snow) are diagnosed. Cloud 

microphysics is currently coupled to a fixed climatology of aerosols (referring to the 

year 2000), but there is an available option to combine it to a modal aerosol treatment 

(Liu et al,. 2012) that predicts the aerosol mass and number of internal mixtures of 

black and organic carbon, dust, sea salt, and sulfate aerosols. A Rapid Radiative 

Transfer Model for GCMs (RRTMG; Iacono et al., 2008) is used to calculate the 

radiative fluxes and heating rates for gaseous and condensed atmospheric species. A 

statistical technique is used to represent sub-grid-scale cloud overlap (Pincus et al., 

2003). New moist turbulence (Bretherton and Park, 2009) and shallow convection 

parameterization schemes (Park and Bretherton, 2009) provide substantial 

improvements to the simulation of shallow clouds in the boundary layer. 

As previously mentioned, the version of CAM5 used has a modified vertical grid 

that has 46 levels instead of 30 and a model top at 0.3 hPa instead of at about 2 hPa. 

This 46LCAM5 includes a parameterization of non-orographic gravity waves following 

Richter et al. (2014). The convective gravity wave efficiency was adjusted to produce a 

QBO period in the lower stratosphere similar to observations. 

2.2   OCEAN 
The Nucleus for European Modelling of the Ocean (NEMO) is a flexible tool for 

representing the ocean and its interactions with the other components of the Earth 

climate system over a wide range of spatial and temporal scales. The NEMO model 

solves the primitive equations subject to the Boussinesq, hydrostatic and 

incompressibility approximations. The prognostic variables are the three velocity 

components, the sea surface height, the potential temperature and the practical 

salinity. 
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The ocean component used in CMCC-SPS3 is based on the eddy-permitting 

version 3.4 of NEMO, with a horizontal resolution of about 25 km, 50 vertical levels (31 

in the first 500 m) and an integration time-step of 18 minutes.  

In the horizontal direction, the model uses a nearly isotropic curvilinear orthogonal 

grid with an Arakawa C–type three-dimensional arrangement of variables. For our 

global configurations, we use tri-polar ORCA-like grids (based on Mercator projection), 

which have a pole in the Southern Hemisphere collocated with the geographic South 

Pole and two poles placed on land in the Northern Hemisphere (in Siberia and 

Canada) in order to overcome the North Pole singularity. Poleward of 20°N, the two 

poles introduce a weak anisotropy over the ocean areas. CMCC-CM2 marine 

component may be run in two configurations: a lower 1° resolution (ORCA1) and a 

higher, eddy-permitting, 1/4° resolution, which is the one used in the seasonal forecast 

system. 

The model uses a filtered, linear, free-surface formulation, where lateral water, 

tracers and momentum fluxes are calculated using fixed-reference ocean surface 

height. The time integration scheme used is a Robert–Asselin filtered leapfrog for non-

diffusive processes and a forward (backward) scheme for horizontal (vertical) diffusive 

processes (Griffies, 2004). The linear free-surface is integrated in time implicitly using 

the same time step. 

NEMO uses a non-linear equation of state. Tracers advection uses a Total 

Variance Dissipation (TVD) scheme while momentum advection is formulated in vector 

invariant form, using an energy and enstrophy conserving scheme (Zalesak, 1979). 

The vertical physics is parameterized using a Turbulent Kinetic Energy (TKE) closure 

scheme (Gaspar, 1990) plus parameterizations of double diffusion, Langmuir cell and 

surface wave breaking. An enhanced vertical diffusion parameterization is used in 

regions where the stratification becomes unstable. Tracers’ lateral diffusion uses a 

diffusivity coefficient scaled according to the grid spacing, while lateral viscosity makes 
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use of a space-varying coefficient. Both are parameterized by a horizontal bi-Laplacian 

operator. Free-slip boundary conditions are applied at the ocean lateral boundaries. At 

the ocean floor, a bottom intensified tidally-driven mixing (Simmons et al., 2004), a 

diffusive bottom boundary layer scheme and a nonlinear bottom friction are applied. No 

geothermal heat flux is applied through the ocean floor. The shortwave radiation from 

the atmosphere is absorbed in the surface layers using RGB chlorophyll-dependent 

attenuation coefficients. 

2.3   SEA ICE 
The sea ice component is version 4 of the Community Ice CodE (CICE4) (Hunke 

and Lipscomb, 2008) which uses the same horizontal grid of the ocean model, but an 

integration timestep of 30 minutes. It includes the thermodynamics of Bitz and 

Lipscomb (1999), the elastic–viscous–plastic dynamics of Hunke and Dukowicz (2002), 

and a subgrid scale representation of ice thickness distribution following Thorndike et 

al. (1975).  

As documented in Holland et al. (2012), the most notable improvements in the sea 

ice component of CESM compared to earlier model versions includes a multiple 

scattering shortwave radiation treatment (Briegleb and Light, 2007) and associated 

capabilities to simulate explicitly melt pond evolution and the deposition and cycling of 

aerosols (dust and black carbon) within the ice pack. These new capabilities influence 

both the mean climate state and simulated climate feedbacks at high latitudes (Holland 

et al., 2012). 

2.4   LAND SURFACE 
The land component is the Community Land Model (CLM4.5) (Oleson et al., 2013), 

designed to represent and enable study of the physical, chemical, and biological 

processes by which terrestrial ecosystems affect and are affected by climate, across a 

variety of spatial and temporal scales. 
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CLM4.5 runs at the same resolution as the atmospheric model (about 1 degree), 

with a 30 minute time-step. The configuration incorporated in CMCC-SPS3 includes a 

treatment of mass and energy fluxes associated with prescribed temporal change in 

land cover. Using an annual time series of the spatial distribution of plant functional 

types (PFTs) and wood harvest, CLM4.5 diagnoses the change in area for each PFT at 

every model time step by performing mass and energy balance that cause variations of 

PFT area during the six-month integration. 

A revised snow model incorporates the Snow, Ice, and Aerosol Radiation 

(SNICAR) model (Flanner et al. 2007). SNICAR includes aerosol deposition of black 

carbon and dust (either prescribed or prognostically determined by CAM), grain-size 

dependent snow aging, and vertically resolved snowpack heating. Dust is mobilized 

from the land by winds (Zender et al., 2003) and passed to the atmospheric aerosol 

model.  

The representation of permafrost was significantly improved in CLM4 (Lawrence et 

al., 2011), while in this version a perched water table above icy permafrost ground is 

introduced (Swenson et al., 2012). The lake model in use in CLM4 is replaced with a 

revised more realistic one (Subin et al., 2012); a surface water is introduced, permitting 

prognostic wetland distribution and the energy fluxes are calculated separately for 

snow/water-covered and snow/water-free land and glacier units. 

New features like a prognostic carbon–nitrogen (CN) model (Thornton et al., 2007) 

and an urban canyon model (Oleson et al., 2008) are not switched on in the SPS 

configuration, nor is a transient land cover and land use change capability, including 

wood harvest (Lawrence et al., 2012). Following the choice of keeping the CN model 

off, the crop model, based on agricultural version of the Integrated Biosphere Simulator 

(AgroIBIS, Kucharik and Brye, 2003), is also not active. 
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2.5  RIVER ROUTING 
The RTM (River Transport Model) was developed to route total runoff from the land 

surface model to either the active ocean, or to marginal seas with a design that 

enables the hydrologic cycle to be closed (Branstetter, 2001; Branstetter and 

Famiglietti, 1999). The horizontal resolution is half-degree (about 50km) and the 

integration time-step is three-hourly. 

2.6   THE COUPLER 
All system components are synchronized by the CESM coupler/driver (cpl7) (Craig 

et al., 2011). The coupling architecture provides plug-and-play capability of data and 

active components and includes a user-friendly scripting system and informative timing 

utilities. Together, these tools enable a user to create a wide variety of out of the box 

experiments for different model configurations and resolutions and also to determine 

the optimal load balance for those experiments to ensure maximal throughput and 

efficiency. In CMCC-SPS3, the coupling is performed every 90 minutes. 

3. INITIAL CONDITIONS 
An important feature implemented in the CMCC-SPS3 concerns the more realistic 

methodology of producing the initial conditions (ICs) for the ocean, land-surface and 

sea ice models, with substantial improvement with respect to the previous system 

(CMCC-SPS2, Materia et al., 2014; Athanasiadis et al., 2014). Moreover, in order to 

increase the signal-to-noise ratio (signal being the predictable component of the 

climate variability, and noise the inherently unpredictable chaotic component), the 

ensemble size of re-forecasts has been significantly increased from nine to forty 

members, and to fifty members in the real-time forecast configuration. 

3.1  ATMOSPHERE 
The atmospheric component is initialized, for all historical re-forecasts, with data 

from the ERA Interim reanalysis (Berrisford et al., 2009, hereafter ERAI). The multilevel 
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fields (e.g. temperature, specific humidity, zonal and meridional wind) are interpolated 

from the 60 hybrid levels of ERAI to the 46 hybrid levels of CAM5.3. In the real-time 

forecast configuration, ECMWF real-time operational analyses are currently used in 

place of the previously used ECMWF MARS-derived fields, since operational analyses 

are available 24h in advance of MARS-derived fields, allowing a considerable 

operational speed-up.  

The basic vertical interpolation approach is to calculate the pressure at each level 

for the input and output hybrid levels, and then interpolate the input variable to the 

pressures of the desired output hybrid levels. Log-linear interpolation is used.  

At each latitude, longitude and level (lev[k]) pressure is computed using an NCAR 

Command Language (NCL) built-in function: 

p(k) = A(k)*p0 + B(k)*ps            (1) 

where p0 is the surface reference pressure, ps is the surface pressure and A and B 

are two empirical coefficients. 

Surface ICs (surface pressure, geopotential height, surface temperature, land-sea 

mask and snow depth) are subject to a horizontal bi-linear interpolation from the T159 

ERA-Interim Gaussian Grid (ECMWF operational analyses in the real-time forecasting 

configuration) to the spectral elements grid, at about one-degree horizontal resolution. 

3.2  OCEAN AND SEA-ICE 
The initial conditions for the ocean and the sea-ice components are provided by 

the monthly reanalysis of the eddy-permitting C-GLORS ocean data assimilation 

system (Storto et al., 2011). Data assimilation is performed with a 3D variational data 

assimilation scheme (Courtier et al., 1998) which adjusts the initial value of the 

mathematical model rather than changing the state directly at analysis time, as it was 

the case in the optimal statistical interpolation used for the ocean reanalyses that were 

initializing the previous operational system CMCC-SPS2. The model used to produce 
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the reanalysis instrumental for the monthly ocean initial condition set is the same as 

the ocean component of CMCC-SPS3, that is NEMO at ¼° horizontal resolution and 50 

vertical levels. 

For the re-forecast period, the ocean and sea-ice initial conditions have been 

obtained from a re-analysis spanning the period 1993-2016, which includes: 

i. a three-dimensional variational data assimilation scheme, called OceanVarthat 

(Dobricic and Pinardi, 2008; Storto et al., 2014), which assimilates hydrographic 

profiles from the U.K. MetOffice Hadley Centre EN3 dataset (Ingleby and Huddlestone, 

2007) supplemented by the EN4 dataset (Good et al., 2013) and along-track altimetric 

observations provided by AVISO (Storto et al., 2011); 

ii. the NEMO ocean model, configured at ¼ degree resolution using a tripolar grid, 

with 50 vertical depth levels with partial steps and coupled to the LIM2 sea-ice model; 

iii. a nudging scheme that assimilates space-borne sea-surface temperature 

observations supplied by NOAA (Reynolds et al., 2007), sea-ice concentration data 

supplied by NSIDC (Cavalieri et al., 1999) and sea-ice thickness fields analysed by the 

Pan-Arctic Ice Ocean Modelling and Assimilation System (PIOMAS, Zhang and 

Rothrock, 2003); 

iv. and a large-scale bias-correction scheme that corrects the model tendencies in 

order to limit the large-scale biases induced by the model and by the atmospheric 

forcing.  

C-GLORS has been forced with both ECMWF ERA-Interim (Dee et al., 2011) re-

analyses and NCEP Reanalyses v1 (Kalnay et al., 1996), using the bulk formulas 

proposed by Large and Yeager (2004).  

The atmospheric fields used are three-hourly temperature and humidity at 2 

meters, wind at 10 meters, daily short-wave and long-wave radiation and total and solid 

precipitation. The shortwave radiation is modulated through a scheme that reproduces 
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the diurnal cycle (Bernie et al., 2007). Further details on the analysis-reanalysis system 

and its performance are available in Storto et al. (2014), where the positive 

contributions of all assimilation components (OceanVar, surface nudging, LSBC) to the 

overall accuracy of C-GLORS are documented. Ocean and sea-ice initial conditions for 

the operational seasonal forecasts are produced by C-GLORS with atmospheric fields 

obtained from both ECMWF and NCEP analyses relative to the period immediately 

preceding the forecast starting date. 

The ICs for the sea-ice component are produced at the same time as the ocean 

reanalysis. Since, technically, the CICE model was originally designed to start from two 

possible configurations (namely a sea-ice climatology and a prescribed analytical 

distribution) an ad-hoc routine was developed in order to allow the model to use the 

actual IC provided by the reanalysis. 

3.3  LAND 
In CMCC-SPS3, initialization of the land component is achieved through a Land 

Data Assimilation System (LDAS, Koster et al., 2009). The technique consists of 

forcing a land-surface model (CLM4.5, the Common Land Model version 4, i.e. the land 

component of SPS3, uncoupled from an atmospheric model) with observed, near-

surface meteorological fields variables consisting of incoming solar radiation, total 

precipitation (solid and liquid), surface pressure, 2m-specific humidity, 2m-temperature 

and 10m-horizontal wind, and then let the model evolve freely in response to 

observations. This approach allows full initialization of the land component, including 

the sub-surface portion, which stores the greater part of the information beneficial for 

predictions at the seasonal scale, and allows fully consistent simulation of land 

properties. 

The atmospheric boundary conditions are provided by either NCEP or ERAI 

reanalysis (ECMWF operational analyses in the real-time forecasting configuration) 

datasets. This provides, in principle, two possible (equivalent) land initialization 
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datasets which will be used to generate the initial condition ensemble (see the 

following Sect. 4). The simulation starts from arbitrary ICs (the so-called “cold start” 

configuration) and needs a certain amount of time to create a physically sound and 

well-balanced state of the soil. Since the Carbon-Nitrogen model, which would require 

hundreds of years to reach equilibrium, is not active, a few years of integration are 

considered sufficient for this particular purpose. A 20-year spin-up (1973-1992) has 

been tested to provide an untrended time-series of soil moisture and soil temperature, 

so the 31st December restart was used as the first land-surface initial condition. 

4. GENERATION OF THE PREDICTION ENSEMBLE 
In order to take account of the uncertainty associated with the initial conditions, 50 

(40) perturbations of the initial state are built for the forecasts (re-forecasts), creating in 

this way a rather large ensemble of possible initial states for CMCC-SPS3. 

Perturbations are generated by combining the initial states of the three main 

components: the atmosphere (10 perturbations of the tropospheric layers), the ocean 

(8 perturbations for the real-time forecasts, 4 for the re-forecasts) and the land surface 

(3 perturbations). Out of the possible 240 (10x8x3, reduced to 120 in the re-forecast 

configuration, 10x4x3), 50 (40) unique combinations are randomly chosen to compose 

the CMCC-SPS3 initial conditions set. 

The way in which perturbations are constructed differs for each system component: 

• Atmosphere. The atmospheric initial condition of CMCC-SPS3 is provided by 

the ECMWF operational analysis (the ERAI atmospheric reanalysis for the re-

forecasts) at 00z UTC on day 1 of the start month. Further nine alternative initial 

conditions are generated with a time-lagging technique. This means that the ECMWF 

operational analyses (ERAI reanalyses for the re-forecasts), based on synoptic times 

of the preceding 12, 24, 36, … hours, and so on, back to 120 hours before the start 

date are used. For all initial conditions starting at 12z UTC, a 12h time realignment 

forecast is performed, so that all lagged ICs start at 00z UTC. 
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• Ocean. Both the assimilated observations and the atmospheric forcing (winds, 

short- and long-wave radiation, 2-meter temperature and specific humidity, 

precipitation) of the control ocean data-assimilation model are perturbed. The 

observations are perturbed by adding a random error proportional to the mean 

observational error. The atmospheric forcing perturbation is constructed by computing, 

for each month and each variable, the daily differences between the atmospheric 

forcing datasets (NCEP and operational ECMWF or ERAI), and randomly adding one 

of these field differences to each daily forcing. 

• Land-surface. Land surface is perturbed by modifying the atmospheric 

boundary conditions (2-meter temperature, sea level pressure, 2-meter specific 

humidity, 10-meter winds, precipitation and surface solar radiation) in the land 

component forced simulation. The required variables are derived using three datasets: 

ERAI, NCEP and a linear interpolation of the two. With this forcing imposed every three 

or six hours, CLM4.5 produces three comparable restarts that are used as initial 

conditions.  

5. THE MODEL CLIMATE: BIAS 
The evaluation of the model climate is based on the entire set of 24 years of 

seasonal forecasts (the “re–forecasts”) performed on the four canonical starting dates 

of February 1st, May 1st, August 1st and November 1st and will be based on global 

fields of atmospheric temperature, surface temperature and precipitation and on 

hemispheric fields (NH and SH) of mean sea-level pressure and 500 hPa geopotential 

height. Such fields will be shown as mean model-produced fields and differences from 

an observed climate for the corresponding period. The averaging period will mostly be 

three months, for lead 0 and lead 3 periods. This will allow an estimate of the climate 

drift of the model as portrayed by the comparison between the first three (lead 0) and 

the second three months (lead 3) of the forecasting period. 
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5.1  THE RE-FORECASTS 
The complete forecast system in full operational configuration has been re-run over 

the 24-year-period 1993–2016 from all first-of-the-month starting dates and for a six-

month forecast period. The system was run in ensemble mode with a population of 40 

members. A model climatological mean has then been constructed, which is compared 

to ERA Interim for the same time frame. This allows an assessment of the model 

systematic error in terms of mean bias and variability and provides a good statistical 

basis to compute predicted anomalies from the model climate, thereby attempting to 

remove mean model bias from the re–forecasts. Bias removal (by computing predicted 

anomalies from the model climate) is an operational standard practice to improve the 

model’s performance in forecasting mode and performance assessment.  

With the purpose of maintaining manageable the number of maps and graphs 

displayed while providing a fairly complete overall picture of the model’s behaviour and 

skill, this technical report will mostly concentrate on three-monthly mean fields for four 

staring dates (February, May, August and November) for lead 0 and lead 3 (the first 

three months and the second three months of the seasonal forecasts). 

5.2  ATMOSPHERIC TEMPERATURE BIASES 
For the purpose of this Technical Report, the diagnostics of atmospheric 

temperature will be limited to global 2m Temperature for all four starting dates (SDs) 

and to 850 hPa temperature for the May and November starting dates. Section 9.2 

contains a comparison of T2m Bias with other state-of-the art SPSs. 

5.2.1  2M TEMPERATURE BIAS 
Temperature at 2 meter (T2m) is an extremely useful near-surface parameter and, 

together with precipitation, one of the most requested and used by seasonal forecasts 

users. As for all other diagnostics, we will concentrate on three-monthly mean fields at 

lead 0 and lead 3 (the first three and the second three months of the forecast 



	18	

integrations). Maps will be presented for the four canonical SDs (February, May, 

August and September). The re-forecasts span the 24-year period from 1993 to 2016 

and always refer to 40 members ensemble sets. Figure 5.1 and 5.2 show T2m mean 

map (upper), bias (lower), lead 0 (left) and lead 3 (right) for all four SDs in sequence. 

Because of the very large influence of the seasonal cycle on T2m parameter, lead 0 

maps of a given start date are always much more similar to lead 3 maps of the 

preceding start date than they are to the lead 3 maps of the same start date. 

During NH winter months (lead 0, Nov SD and lead 3 Aug SD), temperature biases 

tend to be negative (up to 2–3°C) over the higher latitude continental areas of North 

America, Greenland and Eurasia, while they are almost zero or slightly positive over 

the lower latitudes of Europe and Asia and selected portions of North America. Positive 

biases up to 3-4°C can be seen over NH Polar Regions. Light, positive values 

dominate the continental areas of the SH. The biases are much lower on oceanic 

areas, as it is to be expected because of the higher predictability of the SSTs and of 

the influence they have over T2m. The bias is always increasing from lead 0 to lead 3, 

even in seasonal transition periods. 

During summer and autumn months, two fairly large areas of cold bias (up to 2-

3°C) become evident in the eastern part of both the Atlantic and the Pacific Ocean 

basins, mostly limited to NH midlatitude and Tropics. 

The overall amplitude and spatial structure of the SPS3 lead 0 T2m biases are, in 

any case, comparable with similar seasonal prediction global coupled models. 
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Figure 5.1. T2m three-monthly model mean and bias (from ERA Interim) for February 
(upper 2 panel rows) and May (lower 2 panel rows) start dates. Lead time 0 (left panels) 
means the first three months of integration, lead time 3 (right panels) means the second 
three months of integration. 
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Figure 5.2   T2m three-monthly model mean and bias (from ERA Interim) for August 
(upper 2 panel rows) and November (lower 2 panel rows) start dates. Lead time 0 (left 
panels) means the first three months of integration, lead time 3 (right panels) means the 
second three months of integration. 
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5.2.2 850HPA TEMPERATURE BIAS 
From Figure 5.3, it can be seen that the general behaviour of the model, as far as 

NH winter 850 hPa temperature is concerned, is of a slight mid-latitudinal cooling in 

both hemispheres and a corresponding slight warming of the higher latitudes and of the 

tropical regions, in particular the tropical Pacific and the South American coastal Pacific 

(the main El Nino region).  

Cooling and warming are respectively still slowly increasing in the second three 

months of the forecast (up to approximately 2 °C on average). Central Western 

Europe, little affected by bias for all 6 months of the forecast period for the May start 

date, presents a moderate negative bias for the second three months of the November 

start date (lead 3). High mountain areas (e.g. Greenland, Himalaya, Andes and 

Rockies) should be disregarded since 850 hPa surface is below ground and 

temperature is extrapolated and therefore affected by large errors. 

5.3  PRECIPITATION BIAS 
Precipitation is possibly, together with T2m, the parameter most sought after by 

seasonal forecast users. As we did for T2m, we will concentrate on three-monthly 

mean fields at lead 0 and lead 3 (the first three and the second three months of the 

forecast integrations). Maps will again be presented for the four canonical SDs 

(February, May, August and November). The re-forecasts span the 24-year period from 

1993 to 2016 and always refer to 40 members ensemble sets. The four Figures 5.4 to 

5.7 show precipitation mean maps (CMCC-SPS3, upper), bias (CMCC-SPS3, middle 

with NCAR-GPCP analysis as reference, CMCC-SPS2 for comparison, with EMRAI 

analyses for reference, see comment later), lead 0 (left) and lead 3 (right), for all 4 SDs 

(Feb, May, Aug, Nov) respectively in sequence. Because of the very large influence of 

the seasonal cycle on precipitation, lead 0 maps of a given start date are always very 

similar (sometimes more similar) to lead 3 maps of the preceding start date, in addition 

to being similar to the lead 3 maps of the same start date. 
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Figure 5.3   850 hPa Temperature three-monthly model mean and bias (from NCEP 
reanalyses) for May (top) and November (bottom) start dates. Lead time 0 (left panels) 
refers to the first three months of integration, lead time 3 (right panels) refers to the 
second three months of integration. 
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The main feature of the precipitation bias fields for all start dates, is a clear 

tendency to produce a double Intertropical Convergence Zone (ITCZ) in the Tropical 

Pacific, which is a systematic error common to most of the state – of the – art coupled 

general circulation models (CGCMs). Furthermore, errors appear to be generally larger 

for start dates which span mostly summer months (e.g. May), than for start dates which 

span mostly winter months (e.g. November). 

By comparing biases of CMCC-SPS3 and of CMCC-SPS2 (middle and lower 

panels), unfortunately only over land, it is possible to verify that SPS3 has a much-

improved precipitation bias (note, however, the change of sign of the bias over Africa 

and South America, possibly due to the use of NCAR–GPCP climate, which uses 

short-range precipitation forecasts as a proxy to compute global precipitation climate 

fields). 

The overall amplitude and spatial structure of the SPS3 lead 0 precipitation biases 

are, as previously noted for temperature, highly comparable with similar seasonal 

prediction global coupled models (for a direct comparison, see later Sect. 9.3). 
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Fig 5.4   Precipitation three-monthly model mean and bias (from GPCP) for February 
(upper 2 panel rows) start dates. Lead time 0 (left panels) means the first three months 
of integration, lead time 3 (right panels) means the second three months of integration. 
Lower panel row: precipitation bias for the previous CMCC-SPS2 operational model, 
CRU analysis. 
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Figure 5.5   Precipitation three-monthly model mean and bias (from GPCP) for May 
(upper 2 panel rows) start dates. Lead time 0 (left panels) means the first three months 
of integration, lead time 3 (right panels) means the second three months of integration. 
Lower panel row: precipitation bias for the previous CMCC-SPS2 operational model. 
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Figure 5.6   Precipitation three-monthly model mean and bias (from GPCP) for August 
(upper 2 panel rows) start dates. Lead time 0 (left panels) means the first three months 
of integration, lead time 3 (right panels) means the second three months of integration. 
Lower panel row: precipitation bias for the previous CMCC-SPS2 operational model. 

 

 

 



	 27	

 

 

Figure 5.7   Precipitation three-monthly model mean and bias (from GPCP) for November 
(upper 2 panel rows) start dates. Lead time 0 (left panels) means the first three months 
of integration, lead time 3 (right panels) means the second three months of integration. 
Lower panel row: precipitation bias for the previous CMCC-SPS2 operational model. 
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5.4  MEAN SEA LEVEL PRESSURE AND 500 HPA GEOPOTENTIAL HEIGHT 
BIASES 

The next four figures (5.8, 5.9, 5.10 and 5.11) show the model bias in MSLP and 

500 hPa Geopotential height for all start dates, for lead 0 and 3 and for both 

hemispheres. We will concentrate here only on the NH maps of model bias.  

The most prominent feature common (at various degrees of intensity) to all bias 

maps shown is the dominance of an almost equivalent baroptropic zonal wavenumber 

2 structure, with high biases over the oceans and low biases over the land masses. 

The phase of such structures is therefore aligned west of the Greenwich meridian in 

the Euro-Atlantic sector and along the dateline in the Pacific sector. During winter 

months (e.g. start date November) errors tend to be larger around 0E and 180E and 

smaller at 90E and 90W, negative at higher latitudes and positive at lower, subtropical 

latitudes.  

The character of the error is such that it is consistent with weaker planetary 

stationary waves and a zonalization of the westerlies, with mean mid-latitude 

geostrophic zonal westerly winds considerably stronger in the model than in the real 

atmospheric climate (an extremely common feature of practically all global coupled and 

atmosphere-only GCMs), possibly linked with some model misrepresentation of the 

thermal land-sea contrast and/or of orographic forcing (lack of low-level gravity-wave 

drag). 
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Figure 5.8   Mean Sea Level Pressure (MSLP) three-monthly model mean and bias (from 
NCEP reanalyses) for February (upper 2 panel rows) and May (lower 2 panel rows) start 
dates. Lead time 0 (left 2 panels), lead time 3 (right 2panels). Northern Hemisphere, left; 
Southern Hemisphere, right. 
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Figure 5.9   Mean Sea Level Pressure (MSLP) three-monthly model mean and bias (from 
NCEP reanalyses) for August (upper 2 panel rows) and November (lower 2 panel rows) 
start dates. Lead time 0 (left 2 panels), lead time 3 (right 2panels). Northern Hemisphere, 
left; Southern Hemisphere, right. 
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Figure 5.10. 500–hPa Geopotential Height three-monthly model mean and bias (from 
NCEP reanalyses) for February (upper 2 panel rows) and May (lower 2 panel rows) start 
dates. Lead time 0 (left 2 panels), lead time 3 (right 2panels). Northern Hemisphere, left; 
Southern Hemisphere, right. 
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Figure 5.11   500 hPa Geopotential Height three-monthly model mean and bias (from 
NCEP reanalyses) for August (upper 2 panel rows) and November (lower 2 panel rows) 
start dates. Lead time 0 (left 2 panels), lead time 3 (right 2panels). Northern Hemisphere, 
left; Southern Hemisphere, right. 
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5.5  SEA SURFACE TEMPERATURE BIAS 
The main features of the Sea Surface Temperature bias fields for all start dates are 

shown in Figures 5.12, 5.13, 5.14 and 5.15. 

Maps are again presented for the four canonical SDs (February, May, August and 

November). The re-forecasts span the 24-year period from 1993 to 2016 and always 

refer to 40 members ensemble sets. The four Figures 5.12 to 5.15 show CMCC-SPS3 

mean SST maps (upper panels), SST bias (from ERAI re-analyses, middle panels) and 

CMCC-SPS2 bias for comparison (lower panels), lead 0 (left) and lead 3 (right), for all 

4 SDs (Feb, May, Aug, Nov) respectively in sequence. As it was the case for 

precipitation fields, because of the very large influence of the seasonal cycle on SSTs, 

lead 0 maps of a given start date are always fairly similar to lead 3 maps of the 

preceding start date, often more similar then they are to the lead 3 maps of the same 

start date, as they should be if the bias was increasing linearly. 

Again, as for precipitation, SST bias maps for all start dates bear the signature of a 

clear tendency to produce a double Intertropical Convergence Zone (ITCZ) in the 

Tropical Pacific, which is a systematic error common to most of the state-of-the-art 

coupled general circulation models (CGCMs). Furthermore, errors appear to be 

generally larger for start dates which span mostly autumn months (e.g. August at lead 

1 and May at lead 3), and smaller for the lead 0 February start date, which spans 

mostly spring months. 

SST values between  -0.5°C and 0.5°C have been masked, hence most ocean 

surface looks white in the plot. In general, Northern Hemisphere coastal sea areas 

appear warmer than in ERAI reanalysis, in particular at mid and high latitudes. 

Kuroshio current and Gulf Stream temperatures are overestimated, as well as 

Mediterranean coastal temperatures. The three, main coastal upwelling regions 

(California and Baja California, western South America and west southern Africa) are 

also warmer than reanalysis, but the rather high ocean resolution produces smaller 
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biases compared to the SPS2 system (Figure 5.12 to 5.15, lower panels). The main 

cold bias is noticeable in the equatorial Pacific, in particular in the NINO3 and NINO3.4 

regions where the error is of 1.5°C-2°C magnitude. Cold biases are also evident in 

sub-tropical eastern Atlantic, whose cold temperatures spread through northwestern 

Africa and the Portuguese coast and northern Pacific. 

The November forecast biases shown in Figure 5.15 (middle panels) display a 

warmer ocean in the Southern Hemisphere and the Tropical oceans, and a colder 

ocean in the Northern Hemisphere. The Kuroshio current is here colder than in 

reanalysis, while the Gulf Stream is still warmer but the bias magnitude is mitigated. 

The Mediterranean Sea and most northern Indian Ocean are affected by negative SST 

bias, while tropical Indian, Atlantic and the ENSO region show positive anomalies. 

By comparing biases of CMCC-SPS3 and of CMCC-SPS2 (middle and lower 

panels respectively), it is possible to verify that SPS3 presents a somewhat reduced 

SST bias. 

The overall amplitude and spatial structure of the SPS3 lead 0 SST biases are, as 

previously noted for temperature and precipitation, highly comparable biases of similar 

seasonal prediction global coupled models (for a direct comparison, see later Sect. 

9.3). 
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Figure 5.12   Sea Surface Temperature (SST) three-monthly model mean and bias (from 
ERA Interim) for February (upper 2 panel rows) start dates. Lead time 0 (left panels) 
means the first three months of integration, lead time 3 (right panels) means the second 
three months of integration. Lower panel row: precipitation bias the for previous CMCC-
SPS2 operational model. 
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Figure 5.13   Sea Surface Temperature (SST) three-monthly model mean and bias (from 
ERA Interim) for May (upper 2 panel rows) start dates. Lead time 0 (left panels) means 
the first three months of integration, lead time 3 (right panels) means the second three 
months of integration. Lower panel row: precipitation bias for the previous CMCC-SPS2 
operational model. 
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Figure 5.14   Sea Surface Temperature (SST) three-monthly model mean and bias (from 
ERA Interim) for August (upper 2 panel rows) start dates. Lead time 0 (left panels) 
means the first three months of integration, lead time 3 (right panels) means the second 
three months of integration. Lower panel row: precipitation bias for the previous CMCC-
SPS2 operational model. 
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Figure 5.15   Sea Surface Temperature (SST) three-monthly model mean and bias (from 
ERA Interim) for November (upper 2 panel rows) start dates. Lead time 0 (left panels) 
means the first three months of integration, lead time 3 (right panels) means the second 
three months of integration. Lower panel row: precipitation bias for the previous CMCC-
SPS2 operational model. 

 

 

 

  



	 39	

5.6  NH ATMOSPHERIC BLOCKING CLIMATOLOGY 
 

 

 

Figure. 5.16   Winter (DJF) climatologies of blocking frequency along the CBL (Central 
Bolocking Latitude), defined in Athanasiadis et al (2014) for CMCC-SPS3 and the ERA-
Interim and NCEP/NCAR reanalyses (1993–2016). Model climatologies are shown for 
each individual ensemble member (light-red lines). The ensemble-mean climatology (red 
line) is computed as the average of the individual-member climatologies. Upper panel: 
Blocking index computed on direct model Z500 daily mean fields. Lower panel: The 
same but after a standard bias correction of the Z500 daily mean fields has been applied 
to the CMCC-SPS3 using ERA-Interim reanalyses. 
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Blocking is an important phenomenon affecting strongly the extratropical 

atmospheric circulation, weather and climate. The representation of blocking in 

numerical prediction models of all time ranges, from medium-range weather forecasts 

to climate projections, is beyond doubt crucial for the realistic representation of 

persistent weather regimes and of weather and climate extremes affecting large areas 

of the globe. Given the direct relationship between blocking, jet stream variability and 

extratropical teleconnections [Woollings et al. 2008; Athanasiadis et al. 2010; Davini et 

al. 2012; Masato et al. 2012], which represent different facets of the extratropical low-

frequency variability, the successful representation of blocking is particularly important 

also in seasonal forecasting. Here a standard diagnostic is used for the Northern 

Hemisphere blocking. 

Daily mean fields of Z500 are used covering the winter period (DJF) from 12/1993 

to 02/2017. For CMCC-SPS3, these fields are derived from the hindcasts initialized in 

November. Prior to further processing, all fields have been interpolated to a common 

regular 2.5°x2.5° grid. Also, the mean bias (difference of the respective smoothed daily 

climatologies) has been subtracted from the daily Z500 fields as in Scaife et al. (2010). 

For the detection of blocking, the one-dimensional approach introduced by Tibaldi and 

Molteni (1990) is adopted, with the difference that here the central blocking latitude 

(CBL) is allowed to vary with longitude. The CBL follows the zone of maximum 

baroclinic activity, as in Athanasiadis et al. 2014. 

The capability of the CMCC-SPS3 to reproduce the observed Northern 

Hemisphere climatological blocking frequency is assessed. The resulting profiles of 

wintertime blocking frequency are shown in Figure 5.16. At a first glance, one would 

say that the agreement between CMCC-SPS3 and the two reanalyses (ERA-Interim, 

NCEP/NCAR) is quite good, though significant departures can be seen in the domains 

where blocking is most frequent. Moreover, although mean bias correction much 

improves the model statistics for blocking, the actual low-frequency variability and the 

weather associated to blocking remain unaltered in the model. Reducing mean biases 
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in the model itself can however improve significantly the representation of other 

dynamically linked processes. 

6. SEASONAL PREDICTION SKILL SCORES 
Each re-forecast consists of a six-month integration from the beginning of the 

month, evaluated as a deviation from the model’s own climatology (model anomaly). It 

is then compared to the reanalysis anomaly for the corresponding time-frame. The 

operation is repeated for all start dates to obtain a good statistical basis for the 

evaluation of model accuracy, skill, reliability, discrimination, etc. 

For the sake of conciseness, the scores shown in this Section are limited to RMS 

errors, Anomaly Correlations and ROC scores computed on 2m Temperature and 

Precipitation fields. 

El Niño, PNA and NAO specific forecast scores are shown and commented 

respectively in Sects. 7 and 8. 

6.1  RMS ERRORS 
Figure 6.1 shows RMSE of T2m for all four start dates (top to bottom, Feb. to Nov.) 

for lead month 0 (left) and 3 (right). The largest errors are evident for NH winter and 

spring months, practically irrespective of the lead month (0 or 3) and affect the middle 

latitudes and (more intensely) the high latitudes of the Northern Hemisphere. Land and 

ice-covered areas are much more affected than sea areas and North America and Asia 

more than Western Europe. Errors for summer and autumn months remain of the order 

of 2 °C, while in winter and spring they can reach 3 to 4 °C. A problem spot with errors 

larger than 5 °C is evident in winter and spring months in the Baffin Bay, between 

Greenland and Canada, consistently with the fairly large bias of T2m in similar seasons 

shown in Figures 5.1 and 5.2. These errors can be most likely due to problems with the 

SSTs and with sea-ice, although a comparison with SST bias maps (Figures 5.12-5.15) 

is made somewhat difficult due to different map plotting latitude limits. 
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Figure 6.2 shows a comparison between RMSE of T2m for CMCC-SPS3 and for 

SPS2, for all four start dates but for lead month 1 only. Some improvements are 

evident, although the main character of the error fields has remained the same, 

including the Baffin Bay winter months problem. 

The RMS errors of precipitation rate (Figure 6.3) shows global errors larger in 

winter and spring seasons (almost irrespective of lead month) in the tropical Pacific 

and Indian oceans, with spot maxima larger than 4 mm/day only for tropical Pacific and 

Indian oceans and for lead month 0. Noticeable is the large area of errors above 2 

mm/day in the SH central Pacific, from the Tropics up to approximately 40°S. 
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6.1.1 RMS ERROR OF 2M TEMPERATURE 

 

 

 

 

Figure 6.1   Root Mean Square Error (RMSE) for three-monthly mean T2m, all 4 start 
dates; lead month 0, left panels; lead month 3, right panels. 



	44	

 

 

 

Figure 6.2   Root Mean Square Error (RMSE) for three-monthly mean T2m, all 4 start 
dates; lead month 1 (integrations months 2, 3 and 4; upper 4 panels) compared with the 
same errors of the previous CMCC-SPS2 model (lower 4 panels). 



	 45	

6.1.2  RMS ERROR OF PRECIPITATION 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3   Root Mean Square Error (RMSE) for three-monthly mean Precipitation, all 4 
start dates; lead month 0, left panels; lead month 3, right panels. 
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6.2   ANOMALY CORRELATIONS 
Figure 6.4 shows Anomaly Correlation Coefficient of T2m for all four start dates 

(top to bottom, Feb. to Nov.) for lead month 0 (left) and 3 (right). The largest correlation 

values, contrary to RMSE, take place for lead month 0, with little dependency upon 

season (start date). Winter and spring seasons, however, score a little bit better. 

Geographical areas where skill is higher are evidently intertropical oceanic areas, 

extending also to the midlatitudes of both Pacific (more) and Atlantic (to a lesser 

degree) oceanic areas. Large portions of the Northern Hemisphere (mostly continental 

areas, but also the more northern latitudes of the Atlantic Ocean and Greenland) show 

very low correlation values (up to zero) for lead month 3. The problem spot with very 

low skill (large forecast errors) in the Baffin Bay, between Greenland and Canada, is 

again present, as it was for RMSE. Again, some problems with the SSTs and with sea-

ice, are probably to be held responsible. 

Figure 6.5 shows a comparison between ACC of T2m of CMCC-SPS3 and SPS2 

for all four start dates but for lead month 1 only. Some improvements are evident, 

although the main characters of the correlation fields have remained the same. 

The Anomaly Correlation Coefficient maps for precipitation rate (Figure 6.6) show 

global skill smaller for lead month 3 than for lead month 0, fairly irrespective of season 

(start date), with the exception of lead 3, August start date (and, to a lesser extent, also 

May start date), which shows good tropical ocean correlations even at the later lead 

time. Correlations are very large (around 1) in large portions of the tropical Pacific and 

Indian oceans, but appear to extend to higher latitudes of all oceanic areas, mostly for 

lead month 0. Some lower correlations appear in the SH central Pacific, from the 

Tropics up to approximately 40°S, as it was even more evident in RMSE maps for 

precipitation shown previously. 
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6.2.1 ANOMALY CORRELATION COEFFICIENT OF 2M TEMPERATURE 

 

 

 

 

Figure 6.4   Anomaly Correlation Coefficient (ACC) for three-monthly mean T2m, all 4 
start dates; lead month 0, left panels; lead month 3, right panels. 
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Figure 6.5   Anomaly Correlation Coefficient (ACC) for three-monthly mean T2m, all 4 
start dates; lead month 1 (integrations months 2, 3 and 4; upper 4 panels) compared 
with ACC of Surface Temperature of the previous CMCC-SPS2 model (lower 4 panels). 
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6.2.2 ANOMALY CORRELATION COEFFICIENT OF PRECIPITATION 

 

 

 

 

Figure 6.6   Anomaly Correlation Coefficient (ACC) for three-monthly mean Precipitation, 
all 4 start dates; lead month 0, left panels; lead month. 
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6.3  ROC SCORES 
This section contains Relative Operative Characteristics (ROC; Stanski et al., 

1989) Scores for 2m Temperature (Figure 6.7) and Precipitation (Figure 6.8), for start 

dates May (upper panels) and November (lower panels, start date May only for 

Precipitation), lead 0 (left panels) and lead 3 (right panels). The scores are subdivided 

into two terciles (upper and lower) and have been calculated using ERA-Interim to 

verify the near-surface temperatures and the Global Precipitation Climatology Project 

(GPCP; Adler et al., 2003) dataset to verify precipitation. 

The ROC score is usually computed for ensemble forecast systems in order to 

verify the skill of the forecast in evaluating probabilities of occurrence of given events. It 

therefore measures the power of discrimination of the ensemble forecast and values 

above 0.5 denote useful skill compared to climatology. 

Figure 6.7 shows the near-surface temperature ROC for upper and lower terciles in 

May–June–July (MJJ) and August–September–October (ASO) (start date May, lead 

time 0 and 3 respectively), and November–December–January (NDJ) and February–

March–April (FMA) (start date November, lead time 0 and 3 respectively). The plots 

show useful skill across the globe, especially over the oceans and in the tropical 

regions. Over land, there are useful levels of skill over most of South America and 

large portions of Africa in both start dates and for both the upper and lower terciles. In 

these regions and over the tropical oceans, the skill appears to be larger at lead 0, but 

it remains substantial also at lead 3. 

In the extratropics, at lead 0, there are useful levels of skill over Northern Europe 

and North America in NDJ, whereas in MJJ a reasonably good level of skill is found in 

Southern Europe – Mediterranean region. At lead 3, most of the continental areas of 

Eurasia are characterised by no skill. This verification result suggests that the model is 

able to significantly discriminate cold and warm episodes over the larger part of the 

globe.  
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Figure 6.8 shows the precipitation ROC for upper and lower terciles in MMJ and 

ASO (start date May, lead time 0 and 3 respectively). The results shown suggest that 

SPS3 is successful in discriminating below– and above–normal rainfall conditions over 

the larger part of the globe, and particularly over tropical oceans. Maximum skill is 

obtained on the equatorial Pacific region across all lead times. Similar skill patterns are 

found for large parts of tropical and Southern Africa, ranging from ROC sores of 

predominantly 0.6 to patches of 0.9.  

According to these results, it appears evident that the performance of the model is 

better and more consistent in predicting near–surface temperatures than rainfall. This 

result is consistent with the findings from numerous similar systems (e.g., Beraki et al. 

2014; MacLachlan et al. 2015).  
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6.3.1 ROC SCORES FOR 2M TEMPERATURE 

	

	

	Figure 6.7   Relative Operating Characteristics (ROC Score) for three-monthly mean 
T2m, 4 upper panels May start date, 4 lower panels, November start date. Panels rows 1 
and 3, upper tercile; panels rows 2 and 4, lower tercile. Left panels, lead 0, right panels, 
lead 3. 
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6.3.2  ROC SCORES FOR PRECIPITATION 
 

	

	
	
Figure 6.8: Relative Operating Characteristics (ROC Score) for three-monthly mean 
Precipitation, May start date. Upper panels, upper tercile; lower panels row, lower 
tercile. Left panels, lead 0, right panels, lead 3. 
  



	54	

7. FORECASTING ENSO 
 

 

 
Figure 7.1.   Predictive skill (ACC, anomaly correlation coefficient) of the NINO3.4 index 
for the 40 ensemble members of SPS3 (blue lines) and their ensemble mean (red lines). 
Clockwise from top left: February, May, August and November start dates. Green 
dashed line represents the persistence forecast. 
 

Since the main driver of the global mean interannual SST variance is the variability 

in the equatorial Pacific associated with ENSO, the skill and accuracy of a seasonal 

prediction system in this region is a crucial ingredient for reliable seasonal forecasts. 

These values are displayed in Figure 7.1 and 7.2 as anomaly correlation (ACC) and 

root mean squared error (RMSE) respectively for the NINO3.4 region, in eastern-

central equatorial Pacific.  
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ACC shows values higher than 0.6 in all the forecasts for every single ensemble 

member up to sixth forecast months (Figure 7.1) and the ensemble mean is, on 

average, always better than any individual member of the ensemble (deterministic 

forecast). RMSE shows similar characteristics (Figure 7.2), with the initial error 

evolving faster in the February and May start dates, and the ensemble mean having 

the highest accuracy. Here the ensemble spread is also shown: its value is confined 

within 0.4°C except for the May start date, when it exceeds this threshold after the third 

forecast month. 

	

 
Figure 7.2. Accuracy in terms of RMSE (°C) of the NINO3.4 index for the 40 ensemble 
members of SPS3 (blue lines) and their ensemble mean (red lines). Clockwise from top 
left: February, May, August and November start dates. Green dashed line represents the 
persistence forecast. 
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Both these metrics (Figures 7.1 and 7.2, ACC and RMSE) reflect the seasonal 

dependency of the equatorial Pacific SST predictability: the so-called spring barrier has 

long been documented in ENSO forecasts as a drop of skill of the persistence forecast 

across the boreal spring (Chen et al., 2004). CMCC-SPS3 exhibits similar limitations 

due the lower predictability of ENSO in that season. This is also confirmed by the ACC 

curve for persistence forecast, which quickly drops to insignificant correlation values, 

indicating a predictability disconnection from the initial state, for February and May start 

dates. Instead, the ACC curve for persistence remains stable around 0.9 up to the sixth 

month for the start dates of August and November (Figure 7.2, lower panels), 

demonstrating higher SST predictability for these periods. 

	

Figure 7.3   ACC of the NINO3.4 index for SPS2 ensemble members (thin lines) and 
ensemble mean (thick lines). a) February, b) May, c) August and d) November start 
dates. The black dashed line indicates persistence. The blue dashed line indicates the 
ensemble spread. 
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Figure 7.4   RMSE (°C) of the NINO3.4 index for (thin lines) SPS2 ensemble members and 
(thick line) ensemble mean. Clockwise from top left: February, May, August, November 
start dates. The black dashed line indicates persistence. 
 
 

It is evident that the main characteristics of the RMSE and ACC curves are similar 

in SPS3 and SPS2, and that there is a slight improvement in terms of skill and 

accuracy in the most recent SPS version, especially in the forecast months farther from 

initialization. Despite the strong enhancement the new system has gone through, the 

ENSO prediction cannot improve much further, since the large majority of model skill in 

this area is dependent on observed initial conditions. In this regard, it is interesting to 

note the remarkable change in the persistence curves, which highlights that the 

reference period chosen has an influence on ENSO predictability. 
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Figure 7.5.   NINO3.4 index predicted for lead 1 on February, May, August and November 
start dates, years 1993-2016. The green dot identifies the ensemble mean, the central 
mark indicates the median, and the bottom and top edges of the box indicate the 25th 
and 75th percentiles, respectively. The whiskers extend to the most extreme data points 
not considered outliers, and the outliers are plotted individually using the red '+' 
symbol. The red diamonds linked by the red line are the observed NINO3.4 anomalies as 
in the HadSST2 (Rayner et al. 2006) observations. 
 
 

 
Figure 7.6   Same as Figure 7.5, but for SPS2 and for years 1989-2010. 
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Figure 7.5 shows the lead 1 forecast for the main start dates between 1993 and 

2016. The time-series correlation is very high (0.94), while the bias is reduced much 

with the beginning of the century, when the ocean observation network has started 

expanding with the introduction of the Argo float system (Roemmich and Owens, 

2000). Still, a few forecasts show larger bias comparing to the others, especially during 

the declining phases of strong El Niño episodes (as in 2016 and 1998) and in strong La 

Niña phases, which tend to be overestimated by SPS3. Figure 7.6 shows the same but 

for the previous CMCC-SPS2 and for a slightly different years span (1989-2010). An 

even stronger similarity is evident in these two diagrams, for the parts referring to the 

common time span, with good correspondence between timing and amplitude of 

maxima and minima of the index. This highlights that in going from SP2 to SPS3 the 

skill in predicting El Nino has improved slightly. 

8. FORECASTING TELECONNECTION PATTERNS: NAO AND PNA 
In seasonal forecasts, a significant part of the predictive skill in the extratropics (as 

well as in the Tropics, of course) depends on the prediction of large-scale 

teleconnections, such as the North Atlantic Oscillation (NAO) and the Pacific North 

American Pattern (PNA). Therefore, assessing the representation of such 

teleconnnections in a Seasonal Prediction System is fundamental. A more in-depth 

analysis is underway, here the CMCC-SPS3 re-forecasts (1993–2016) for the above-

mentioned teleconnections are compared against the observations, referring to winter-

mean indices.  

8.1  NAO 
Against past beliefs regarding the predictability of the NAO, recent studies have 

demonstrated significant predictive skill in wintertime exhibited by different Seasonal 

Prediction Systems (Riddle et al., 2013; Scaife et al., 2014, Athanasiadis et al., 2014). 

Furthermore, Athanasiadis et al., 2017) showed that a multi-model ensemble 
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surpasses individual systems in this regard. Yet, the full potential of multi-model 

ensembles in seasonal forecasting is still to be explored and realised. CMCC-SPS3 is 

a good candidate for such ensembles, exhibiting NAO predictive skill comparable to 

other state-of-the-art systems. 

Using ensemble mean MSLP anomalies from the CMCC-SPS3 hindcasts initialised 

in November, the NAO index for winter (DJF) was computed as in Lie and Wang 

(2003). In Figure 8.1 the latter is compared to the respective observed index (ERA-

Interim). The correlation coefficient between such timeseries is known to depend 

significantly on the exact period examined (Kang et al. 2014, Shi et al., 2015). For the 

entire period shown (1993–2016) the correlation coefficient is not greater than 0.29, 

failing the statistical significance test at the 95% level (the respective threshold is 0.34 

for 24 independent years). However, to allow comparison with other systems (UKMO-

GloSea5, CMCC-SPS2, CFSv2 discussed in Athanasiadis et al., 2017), the correlation 

coefficient for CMCC-SPS3 for the same period 1997–2011 was calculated and found 

to be 0.50, which is found to be statistically significant at the same level (95%). 

 

 
Figure	 8.1	 	 	 CMCC-SPS3	 hindcasts	 of	 the	winter-mean	NAO	 index	 against	 the	 respective	 observed	
index	(ERA-Interim).	
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8.2  PNA 

 
Figure	 8.2	 	 	 CMCC-SPS3	 hindcasts	 of	 the	 winter-mean	 PNA	 index	 against	 the	 respective	 observed	
index	(ERA-Interim).		

 

 

Equally important to the NAO, which affects the extended North Atlantic domain, 

the PNA, Wallace and Gutzler (1981), is a key driver for the transient weather and 

climate over North America. The dynamics of the PNA produces higher predictability 

compared to the NAO, and a significant part of this predictability is related to ENSO 

and processes in the tropical Pacific. As it is the case for other Seasonal Prediction 

Systems, see Athanasiadis et al. (2014), the CMCC-SPS3 predictive skill for the PNA 

significantly exceeds that for the NAO. For the entire period shown in Figure 8.2 the 

correlation coefficient is 0.73, while for the period 1997–2011 it is found to be 0.82 

(same as for the UKMO-GloSea5, Athanasiadis et al., 2014). 
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9. SOME COMPARISONS WITH OTHER STATE-OF-THE-ART FORECASTING 
SYSTEMS 

We will attempt, in this section, a preliminary comparison exercise to measure the 

relative quality of CMCC-SPS3 Seasonal Forecasting System by comparing some 

biases and/or skill scores with other state-of-the-art Forecasting Systems. These will 

be, depending upon the bias/score type and the predicted variable/index, ECMWF 

(System 4), Meteo-France (Arpege 5), UKMO (GloSea5), NCEP (CFSv2) or the North-

American Multimodel Ensemble System (NMME). 

Combinations of climate variables and/or indices and skill scores shown will be: 

• SST Bias:           CMCC, Meteo-France, ECMWF, NCEP Figure 9.1 

• T2m Bias:          CMCC, Meteo France             Figure 9.2 

• Precipitation Bias:       CMCC, Meteo-France, ECMWF, NCEP    Figure 9.3 

• ENSO, PNA, NAO:      CMCC, NMME, UKMO, ECMWF            Figure 9.4, 9.5, 9.6 

• ACC T2m:           CMCC, Meteo-France, ECMWF, NCEP Figure 9.7, 9.8 

• ACC Precipitation         CMCC, ECMWF, NCEP             Figure 9.8, 9.9 

• ROC score on Precip.: CMCC, UKMO,              Figure 9.10, 9.11 

9.1  SST BIAS 
The SST bias at lead 0 for the CMCC May forecast is shown in Figure 9.1 (top left 

panel). Values between -0.5°C and 0.5°C have been masked, hence most ocean 

surface looks white in the plot. As already pointed out in Section 5, in general, Northern 

Hemisphere coastal sea areas appear warmer than in ERAI reanalysis, in particular at 

mid and high latitudes. Kuroshio current and Gulf Stream temperatures are 

overestimated, as well as Mediterranean coastal temperatures. The three, main coastal 

upwelling regions (California and Baja California, western South America and west 

southern Africa) are also warmer than reanalysis, but the rather high ocean resolution 

produces smaller biases compared to other lower resolution systems (right and lower 

panels of Figure 9.1) or the SPS2 version (Figure 5.12 to 5.15). The main cold bias is 

noticeable in the equatorial Pacific, in particular in the NINO3 and NINO3.4 regions 
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where the error is of 1.5°C-2°C magnitude. Cold biases are also evident in sub-tropical 

eastern Atlantic, whose cold temperatures spread through northwestern Africa and the 

Portuguese coast and northern Pacific. 

The SPS3 November forecast bias shown in Figure 9.1 (mid left panel) displays a 

warmer ocean in the Southern Hemisphere and the Tropical oceans, and a colder 

ocean in the Northern Hemisphere. The Kuroshio current is here colder than in 

reanalysis, while the Gulf Stream is still warmer but the bias magnitude is mitigated. 

The Mediterranean Sea and most northern Indian Ocean are affected by negative SST 

bias, while tropical Indian, Atlantic and the ENSO region show positive anomalies. 

In a confrontation with another state-of-the-art system (Arpège System 5, AS5, top 

and middle right panels), SPS3 shows considerably lower biases, especially in the 

Northern Hemisphere, for the May forecast, while similar biases but reversed in sign 

can be noted in the November forecast for the subtropical Southern Ocean. 

Analogous characteristics are found at mid latitudes in Southern Ocean, with 

patchy distribution of errors for the May start date, and a general warm bias for the 

November start date. 
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Figure	9.1	 	 	Sea	Surface	Temperature	 (SST)	 three-monthly	model	mean	bias	 (from	ERA	 Interim)	 for	
May	start	dates	(upper	2	panels),	and	for	November	start	dates	(middle	2	panels),	 lead	time	0.	Left	
panels:	CMCC	model.	Right	panels:	ARPEGE	System	5	model	(Meteo	France).	Lower	two	panels:	DJF	
bias	of	Sys4	(ECMWF,	left	panel)	and	CFSv2	(NCEP,	right	panel),	both	for	lead	time	1.	

 

Figure 9.1, two lower most panels, show the SST bias of ECMWF Sys4 (left) and 

NCEP CFSv2 (right) for Indian and Pacific Oceans. In the equatorial Pacific Ocean a 

much more pronounced cold bias is evident together with a large negative bias in the 

southern Indian Ocean, where SPS3 performs considerably better. CFS2 (right panel) 

also exhibits large negative biases in both middle and high latitudes of Indian and 
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Pacific Oceans, together with a very intense positive error spot in the upwelling region 

off the South American Pacific coast (both features being absent in SPS3). 

We can therefore conclude that SPS3, as far as SST bias is concerned, performs 

as well or better than all three other state – of – the – art models here considered. 

9.2  T2M BIAS 

 

 
Figure	 9.2	 	 	 Temperature	 at	 2m	 three-monthly	model	mean	bias	 (from	ERA	 Interim)	 for	May	 start	
dates	(upper	2	panels),	and	for	November	start	dates	(lower	2	panels),	lead	time	0.	Left	panels:	CMCC	
model.	Right	panels:	ARPEGE	System	5	model	(Meteo	France).	
 

Compared to ERAI reanalysis, SPS3 shows 2m-temperature bias, Figure 9.2, left 

panels, lower than 4°C in the May start date forecasts (lead time 0, top left panel), 

while larger cold biases are found in the November start date over Northern Siberia 

and Northern Canada (lead time 0, bottom left panel). In fact, the November start date 

bias is very sensitive to snow initialization and evolution, whose bias can strongly affect 

near surface temperatures, triggering large errors. Similar dynamics are forced by sea–

ice biases: if the simulation of Arctic sea–ice is defective, so will be the corresponding 

2m temperature. 
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Cold and warm biases are homogeneously distributed in the May forecast, while in 

November warm (cold) errors are mostly occurring in the Southern (Northern) 

Hemisphere, with the exceptions of Southern Europe, Southwestern Asia and Northern 

India. In the other state-of-the-art system considered here (Arpege System 5, right 

panels) the sign of the anomalies is reversed in the November forecast, while in May 

the great majority of lands display a cold bias. On the basis of these figures, it can be 

concluded that CMCC-SPS3 accuracy is totally comparable to the other state-of-the-art 

SPS. 
	  



	 67	

9.3  PRECIPITATION BIAS 
 

 
 

 
 

 
Figure	 9.3	 	 	 Precipitation	 three-monthly	model	mean	 bias	 (from	 ERA	 Interim)	 for	May	 start	 dates	
(upper	 2	 panels),	 and	 for	November	 start	 dates	 (middle	 2	 panels),	 lead	 time	 0.	 Left	 panels:	 CMCC	
model.	Right	panels:	ARPEGE	System	5	model	 (Meteo	 France).	 Lower	 two	panels:	DJF	bias	of	 Sys4	
(ECMWF,	left	panel)	and	CFSv2	(NCEP,	right	panel),	both	for	lead	time	1.	

 
Figure 9.3 illustrates Precipitation bias. The colour–bars between CMCC-SPS3 

(top and middle left panels) and Arpege System 5 (top and middle right panels) are 

reversed, and unfortunately the values intervals are different. However, it is possible to 

notice strong similarities between the biases of the two systems, both on land and 
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ocean. Both systems show wet biases over the tropical oceans and in the winter 

Hemisphere, while on land they display dry errors in Asia and North America in the 

November forecast, and wet errors in the May forecast. South America is generally 

drier than NCEP (GPCP) reanalysis in both systems. 

 

Also, the amplitude of biases is comparable between the two systems and also 

with ECMWF Sys4 and NCEP CFSv2 (two lower most panels), making CMCC-SPS3 

as accurate as any other state-of-art prediction system. 

Importantly, with the exception of Sys4, all other three systems display the typical 

double ITCZ error for both start dates. 

9.4  ENSO (EL NIÑO 3.4) 
 

 
 

Figure	 9.4.	 Nino	 3.4	 index	 predicted	 by	 CMCC-SPS3	 for	 lead	 1	 on	 February,	 May,	 August	 and	
November	 start	 dates,	 years	 1993-2016.	 The	 green	 dot	 identifies	 the	 ensemble	mean,	 the	 central	
mark	 indicates	 the	median,	 and	 the	 bottom	 and	 top	 edges	 of	 the	 box	 indicate	 the	 25th	 and	 75th	
percentiles,	 respectively.	 The	 whiskers	 extend	 to	 the	 most	 extreme	 data	 points	 not	 considered	
outliers,	and	the	outliers	are	plotted	 individually	using	the	red	 '+'	symbol.	The	red	diamonds	 linked	
by	 the	 red	 line	 are	 the	 observed	 NINO3.4	 anomalies	 as	 in	 the	 HadSST2	 (Rayner	 et	 al.	 2006)	
observations.	

 
In Figures 9.4 and 9.5 the values of the CMCC-SPS3 NINO3.4 index are compared 

to those of the North America Multi-Model (NMME), showing that values are quite 

comparable with those of a multi-model ensemble, which can feature about the double 
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of ensemble members. Like NMME, SPS3 shows the largest discrepancies from 

observations in extreme ENSO years, such as 1997 (El Niño) and 1998-1999 (La 

Niña). 

 

 
Figure	9.5			Nino	3.4	index	as	predicted	by	the	NMME	(North	American	Multi-Model	Ensemble.	Area-
averaged	 SSTA	 5°S–5°N,	 170°–120°W)	 plumes	 for	(top)	lead	 month	 0	 and	 (bottom)	 lead	 month	 6.	
Both	 series	 encompass	 the	 1996–2010	 period,	 red	 lines	 indicate	 the	 ensemble	 mean	 of	 NMME	
prediction,	grey	bands	the	79	ensemble	members,	black	lines	the	observations.	From	Kirtman	et	al.,	
(2014).	
	

9.5  PNA AND NAO 
Regarding the predictive skill for the main extratropical teleconnections of the 

Northern Hemisphere, referring to the NAO and the PNA, the CMCC-SPS3 shows a 

behaviour similar to that of other state-of-the-art SPSs. Generally, the respective skill 

(ACC) for a given season and lead time is known to depend strongly on the ensemble 

size, as well as on the historical period considered. A fair comparison between different 
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SPSs should consider this dependence, yet such a thorough comparison would go 

beyond the scope of this report. Here only some general indications are given. 

Regarding the PNA, the predictive skill of CMCC-SPS3 is very good. In particular, 

as mentioned earlier, the lead-1 CMCC-SPS3 skill for wintertime in the period 1997–

2011 (0.82) matches that of the UKMO-GloSea5 computed for the same period 

(Athanasiadis et al., 2014, in Figure 9.6 top left panel). Also, the CMCC-SPS3 appears 

to outperform the CMCC-SPS2 (Figure 9.6 bottom left panel) as well as the ECMWF-

Sys4 and CFSv2 (Kim et al., 2012, in Figure 9.6 bottom right panel). It should be noted, 

however, that the correlations quoted for these three systems in Figure 9.6 refer to 

slightly different periods and ensemble sizes. 

 
Figure	9.6	 	 	PNA	and	NAO	indices	as	predicted	by	different	SPSs,	on	the	left	for	the	UKMO-GloSea5	
and	CMCC-SPS2,	from	Athanasiadis	et	al.	(2014)	and	on	the	right	for	ECMWF-Sys4	and	NCEP-CFSv2,	
from	Kim	et	al.	(2012).	

The predictive skill for the NAO in wintertime, with all correlations computed for the 

same period (1997–2011) and lead time (lead 1), appears to be higher in the UKMO-

GloSea5 and CFSv2 systems than in CMCC-SPS3 (Athanasiadis et al., 2017, Table 

1). Nevertheless, CMCC-SPS3 does exhibit a statistically significant correlation for that 

period (0.50). For a different period (1982–2008) ECMWF-Sys4 and CFSv2 do not 

exhibit statistically significant correlations (Kim et al., 2012, Figure 9.6 top right panel). 
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To conclude this section, it is evident that, in order to exhaustively assess the 

performance of CMCC-SPS3 against other state-of-the-art systems, further analysis is 

required. 

9.6  ACC OF T2M 
 

	

Figure	 9.7.	 Anomaly	 Correlation	 Coefficient	 (ACC)	 for	 three-monthly	 mean	 T2m.	 May	 start	 date	
(upper	 panels)	 and	 November	 start	 date	 (lower	 panels),	 lead	month	 1.	 Left	 panels,	 CMCC	model;	
right	panels,	ARPEGE	System	5	model	(Meteo	France).		

In terms of predicting near-surface air temperature (T2m) anomalies, a comparison 

is made separately for summertime (against ARPEGE-Sys5) and for wintertime 

(against ARPEGE-Sys5, ECMWF-Sys4 and NCEP CFSv2, see Figures 9.7 and 9.8). 

Yet, again, the respective periods are not precisely the same.  
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For the summer season (May start date, Figure 9.7, top panels) the CMCC-SPS3 

seems to be performing better than the ARPEGE-Sys5 in the Tropics and to be slightly 

less skilful than the latter only over certain areas of the North Atlantic (e.g., south of 

Greenland, where CMCC-SPS3 suffers from significant SST biases). In contrast, the 

ACC of CMCC-SPS3 exceeds 0.8 over large parts of the Pacific (Tropics and 

extratropics) and of the tropical Atlantic. 

Regarding wintertime (November start date, Figure 9.7, lower panels and Figure 

9.8, left panels), the CMCC-SPS3 appears to overperform CFSv2 almost everywhere 

and also to match the ECMWF-Sys4 skill in most areas of the globe. Again, in the area 

south of Greenland, where the Gulf Stream extends, the CMCC-SPS3 seems to have 

difficulty in matching the skill of the other systems. 

 

 
Figure	 9.8.	 Figure	 adapted	 from	 Kim	 et	 al.	 (2012).	 Anomaly	 Correlation	 Coefficient	 (ACC)	 for	 the	
November	 start	 date	 (DJF),	 left	 panels	 for	 T2m	and	 right	 panels	 for	 precipitation.	 Top	panels	 Sys4	
(ECMWF),	left	panels	CFSv2	(NCEP).	

9.7 ACC AND ROC SCORE FOR PRECIPITATION 
Regarding precipitation and focusing on ACC, CMCC-SPS3 (Figure 9.9) compares 

very well with ECMWF-Sys4 and CFSv2 for the November start date (from Kim, et al., 
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2012; Fig 9.8, right panels). Again, noting that correlations are computed for slightly 

different periods (i.e. 1997–2011 versus 1993–2016), CMCC-SPS3 has larger areas 

with very high skill (>0.9) in the tropical Pacific than both of the above-mentioned 

systems. It also has better skill (>0.7) over the Indian Ocean, Western Australia, NE 

part of South America and the subtropical North Atlantic. 

 

 
Figure	9.9.	CMCC	SPS3	Anomaly	Correlation	Coefficient	(ACC)	for	three-monthly	mean	Precipitation.	
November	start	date,	lead	month	1.	

Considering ROC scores for the three tercile categories (upper, middle and lower 

tercile) shown in Figure 9.10 and 9.11 for May and November start dates respectively, 

a comparison of CMCC-SPS3 with UKMO-GloSea5 shows that the former is at least 

equally good in the Tropics. It is, however, also equally bad in the extratropics, a 

feature unfortunately common to practically all currently operational state-of-the-art 

SPSs. 
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Figure	 9.10.	 Relative	 Operating	 Characteristics	 (ROC	 Score)	 for	 three-monthly	 mean	 Precipitation,	
May	start	date,	 lead	1.	Upper	panel,	upper	tercile;	middle	panel,	middle	tercile;	 lower	panel,	 lower	
tercile.	Left	panels,	CMCC	Model;	right	panels,	UKMO	Model.	
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Figure	9.11.	Relative	Operating	Characteristics	(ROC	Score)	for	three-monthly	mean	Precipitation,	
November	start	date,	lead	1.	Upper	panel,	upper	tercile;	middle	panel,	middle	tercile;	lower	panel,	
lower	tercile.	Left	panels,	CMCC	Model;	right	panels,	UKMO	Model.	
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10.  CONCLUSIONS 
The purpose of this Technical Report is to assess and document in an objective 

and comparable way the overall quality of the CMCC-SPS3 Seasonal Prediction 

System in full ensemble configuration, both in terms of model climate and of model 

performance in seasonal prediction mode. The assessment has been made on the 

basis of the so-called “re-forecast” period, i.e. the 24-year period spanning from 1993 

to 2016, using 6-month forecasts starting from the 4 canonical dates of February 1st, 

May 1st, August 1st and November 1st and being based on forecast ensembles of 40 

members. The overall number of single model integrations amounts, therefore, to 

24x4x40=3840 6-month long integrations, for a total of 1920 years of model integration 

time. 

The assessment has been based primarily on the computation of the model bias as 

portrayed by atmospheric temperature, precipitation, MSLP and 500 hPa height and of 

SST. Atmospheric 2m temperature and precipitation seasonal forecasts have been 

objectively scored in terms of RMS Errors, ACC and ROC Scores. 

The capability of the model to represent and predict ENSO in terms of El Niño 3.4 

Index has been assessed and compared with other models of similar complexity, 

usually used to produce similar seasonal forecasts. 

In the light of the widespread interest in seasonal forecasts for the NH midlatitudes, 

the capability of the CMCC-SPS3 system to forecast important teleconnection patterns 

like the NAO and the PNA has also been assessed and compared with other systems. 

The CMCC-SPS3 Seasonal Prediction System has been confirmed as a State-of-

the-art seasonal prediction system capable of producing operational seasonal 

forecasts with acceptable model biases and demonstrable skill both in tropical regions 

and in the midlatitudes. Particularly good skill is shown in forecasting ENSO in tropical 

regions and important teleconnection patterns like NAO and PNA in midlatitudes. 
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