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Motivation

Accurate estimates of precipitation is crucial for
 

• Impact Studies

• Water Management 
• RIsk Assessment 

Human activities may be strongly 
impacted especially downstream 
of mountainous regions



Challenges

Major challenges modeling precipitation 
over mountainous regions:

 

• High variability in both space 
and time 

• Abrupt discontinuities

• Complex interaction among 
atmospheric processes and 
orography. 



Existing Methods

Focus on modelling precipitation in space

• Statistical/geostatistical interpolation of precipitation data from 
weather stations   

● Rely on information in the observations
● Geostatistical attributes (e.g. spatial dependence)
● Auxiliary variables (e.g. elevation)
● Limitations: data may not be representative

• Up-slope methods 
● Analytical models
● Approximated description of physical processes
● Limitations: may deviate from the observed precipitation 

patterns 



Objective

Definition of a Statistical Framework for inferring the spatial distribution and 
intensity of precipitation over mountainous regions

• Describes the variations in space of precipitation fields

• Combines information from both    
● precipitation data
● description of physical processes causing orographic 

precipitation

• Improves numerical climate models usability (downscaling) 
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Local Scale Orographic Processes: 
The Up-slope Mechanism

Idealized terrain features: indefinitely elongated ridge;

Resembles real ranges as Cascades, Sierra Nevada, Andes, coastal ridges
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Local Scale Orographic Processes: 
The Up-slope Mechanism

Moist flow is forced to raise over the topographic obstacle;

It cools;



Local Scale Orographic Processes: 
The Up-slope Mechanism

Saturation threshold may be reached → Condensation;

A cloud is formed;



Local Scale Orographic Processes: 
The Up-slope Mechanism

Flow proceeds past the topographic obstacle: 

Descending it becomes warmer, cloud may evaporate 



Local Scale Orographic Processes: 
The Up-slope Mechanism

Both condensation and evaporation displayed on one surface



Local Scale Orographic Processes: 
The Up-slope Mechanism

S

Source of condensation (+ -) (Condensation rate)



Local Scale Orographic Processes: 
The Up-slope Mechanism

Source S of condensation is proportional to :
 

• Impinging Horizontal Wind Velocity 

• Mountain Slope

• Saturation Water
 Vapor Density

S



Local Scale Orographic Processes: 
The Governing Equation

The up-slope-time-delay model of Smith,2003

Two lumped categories of condensed water (column integrated):
•       Cloud Water (density)
•       Hydrometeor (density)
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Local Scale Orographic Processes: 
The Governing Equation

Reducing up-slope-time-delay model of Smith,2003

One lumped category of condensed water (column integrated):
•       Hydrometeor (density)



Environmental Conditions:
 

• Impinging Horizontal Wind Velocity : 15 m/s

Local Scale Orographic Processes: 
Potential Precipitation Rate

S
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Precipitation due to large scale processes: 

Majority of precipitation observed in the mid-latitudes attributable  to  

• Frontal Systems 

• Convective Clouds

They originate due to mechanisms most often not related to 
topography.

Topography alters their features.  



Precipitation due to large scale processes: 

LS precipitation

Idealized box representing large-scale precipitation over the peak 



Precipitation due to large scale processes: 

S + LS precipitation
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Definition of a Statistical Framework for inferring the spatial distribution and 
intensity of precipitation over mountainous regions

• Describes the variations in space of precipitation fields

• Combines information from both    
● precipitation data
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Grid:
= +

=

Analogous of 
Autoregressive 
Parameters

Unknown

Autoregression: a closer look to W 

Large Scale 
Wind



Model Summary

:Estimated from observed precipitation data
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Model Summary

:Estimated from observed precipitation data

Stochastic Noise

Simultaneous Autoregressive 
Model 

(SAR model)



Some key points

• Orographic Processes from the Linear Theory of 
Orographic Precipitation;

• Atmospheric fields (U, Humidity, ...) from reanalysis: 
nesting and sub-grid refinement

● process-informed
● spatially-consistent
● adjustment from data

• Gridded observational dataset needed



Case Study: Winter Storms in California

Domain and Data Precipitation Data 

Wind, Temperature, humidity, LS Prec: 
ERA-Interim reanalysis 

CPC US (NOAA/OAR/ESRL PSD)
.25 x .25 deg Regular Grid



Winter Storm in Central California

4 February 1990 

• Typical Orographic 
Effect 

• Medium Intensity 
Storm



Winter Storm in Central California
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Winter Storm in Northern California

8 January 1990 



Winter Storm in Northern California
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Winter Storm in Southern California

2 January 1990 



Winter Storm in Southern California



Winter Storm in Southern California



Winter Storm in Southern California



Ongoing Work

Toward a Predictive Downscaling Method 

• Evolution in time driven by large-scale processes 

• Link                     to atmospheric fields

• Interpretable linkages from a process-perspective
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Toward a Predictive Downscaling Method 

Linking             to Actual Relative Humidity



Toward a Predictive Downscaling Method 

Linking             to Geopotential Height



Conclusion

• Orographic up-slope mechanisms 
→ Condensation → Precipitation

• Upslope model used to create sub-grid local signal of 
precipitation 

• Local scale source + Large Scale Precipitation

• Adjustment from data in a statistical framework

• Case Studies in California show improved agreement with 
observations

• Interpretable linkages of model parameters can be found 
Towards a predictive downscaling method



Thanks
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Thank you for attending this CMCC webinar. 

This webinar was recorded and will be uploaded to the 
CMCC website: www.cmcc.it

If you have any further question about the webinar, 
please email: webinar@cmcc.it 


