WEBINAR May 31, 201<u>8 - h. 12.30 pm CEST</u>

Ratcheting up Brazil's Nationally Determined Contribution (NDC): a consistent roadmap towards the global objective of a 1.5 or 2° C world

Roberto Schaeffer - Presenter Energy Planning Program, COPPE, Universidade Federal do Rio de Janeiro

Enrica De Cian - Moderator CMCC@Ca'Foscari

www.cmcc.it

To investigate and model our climate system and its interactions with **society** to provide reliable, rigorous, and timely scientific results, which will in turn stimulate sustainable growth, protect the **environment**, and develop science driven adaptation and mitigation policies in a changing climate

MISSION

7

NETWORK

RESEARCH DIVISIONS

TOPICS

Modelling PolicyAdaptation AgricultureSociety PredictionsImpacts Hydrogeology ForestsSimulations OceansEcosystems Computing Services

Events

Education

Communication

0

Q&A session

To participate in the Q&A Session, please use the chat room provided by the Go-to-Webinar system

Ratcheting up Brazil's nationally determined contribution (NDC) A consistent national roadmap towards the global objective of a 1.5 - 2°C world

Prof. Roberto Schaeffer, COPPE/UFRJ

with support from Alexandre Szklo, Andre Lucena, Angelo Gurgel, Pedro Rochedo, Alexandre Koberle, Bruno Cunha, Rafael Garaffa and Mariana Imperio

CMCC, Venice, 31 May 2018

This project has received funding from the **European Union's Horizon 2020 research and innovation programme** under grant agreement No 642147 (CD-LINKS).

Model Linkages

COmputable Framework For Energy and the Environment

The COFFEE Model

The COFFEE Model

The COFFEE Model: Scenario Protocol

- Global Current Policies (GCP or NPi): based on current and indicated policies for all regions (energy, land and climate)
- Global 2°C (G2D or NPi1000): GCP + global budget of 1,000 GtCO₂
- Global 1.5°C (G1.5D or NPi400): GCP + global budget of 400 GtCO₂

cenergia

COFFEE: Current Policies (GCP or NPi)

Cumulative Emissions: 5,500 GtCO₂

Primary Energy (EJ)

Land Use Change (Gha)

COFFEE: 2°C Scenario (G2D or NPi1000)

Cumulative Emissions: 5,500 GtCO₂

Primary Energy (EJ)

Land Use Change (Gha)

COFFEE: 1.5°C Scenario (G1.5D or NPi400)

Cumulative Emissions: 5,500 GtCO₂

Primary Energy (EJ)

cenergia

Land Use Change (Gha)

COFFEE: Scenario Comparison

Global CO2 Emissions

COFFEE: National Budgets for Brazil

COFFEE's CO₂ budgets for Brazil for the 2010-2050 period: (to be used in the BLUES Model)

- Global 2°C (G2D or NPi1000): 23.6 GtCO₂ (out of 1,000 GtCO₂)
 - Literature average: 23.8 GtCO₂
- Global 1.5°C (G1.5D or NPi400): 17.0 GtCO₂ (out of 400 GtCO₂)

																								COPPE UFRJ Programa de Planejamento Energético
	Reference	Messner et al, 2010	Gignac and Matthews, 2015	Rocha et al, 2015				Lucon et al, 2015					Kanitkar et al, 2013					CDLINKS, 2017						cenergia
	How was budget determined?	Allocation (per-capita)	Allocation (C&C)	PRIMAP model (min) PRIMAP model (max)	Allocation TISS-DSF Scend	Allocation TISS-DSF Scend	Allocation TISS-DSF Scend	Allocation TISS-DSF Scent	Allocation WWF-Ecofys CDC	Allocation WWF-Ecofys GDR	Allocation WWF-Ecofys C&C	Allocation IEA (WEO2013)	Allocation (population)	AIM/CGE - INDC2030i 1000	AIM/CGE - NPi2020 1000	COPPE-COFFEE 1.0 - INDC2030i 1000	COPPE-COFFEE 1.0 - NPi2020 1000	DNE21+ V.14 - INDC2030i 1000	DNE21+ V.14 - NPi2020 1000	IMAGE 3.0 - INDC2030i 1000	IMAGE 3.0 - INDC2030ip 1000	IMAGE 3.0 - NPi2020 1000	Average value from literature	
Probability	< 2°C	67%	RCP2.6	67% 67%	n/a	n/a	67%	67%	67%	67%	67%	67%	67%	67%	67%	67%	ı							
Budget	GtCO2	21.0	18.0	16.0 41.0	19.8	21.1	29.6	41.4	22.0	25.0	26.0	23.0	41.3	4.7	0.5	16.0	23.6	7.5	13.1	37.9	37.5	376	23.8	
	Period	2010-2050	2014-2050	2010-2050 2010-2050	2010-2050	2010-2050	2010-2050	2010-2050	2010-2050	2010-2050	2010-2050	2010-2050	2010-2050	2010-2050	2010-2050	2010-2050	2010-2050	2010-2050	2010-2050	2010-2050	2010-2050	2010 2050	2010-2050	

Brazil's Land-Use and Energy Systems

The BLUES Model

The BLUES Model: Scenario Protocol

- National Current Policies (NCP or NPi): based on current and indicated policies for Brazil (energy, land and climate)
- National 2°C (N2D or NPi1000): NCP + national share of 2°C budget up to 2050 (23.6 GtCO₂)
- National 1.5°C (N1.5D or NPi400): NCP + national share of 1.5°C budget up to 2050 (17.0 GtCO₂)

BLUES: Current Policies (NCP or NPi)

GHG Emissions

BLUES: Current Policies (NCP or NPi)

Primary Energy Consumption

BLUES: 2°C Scenario (N2D or NPi1000)

GHG Emissions

BLUES: 2°C Scenario (N2D or NPi1000)

Primary Energy Consumption

BLUES: 1.5°C Scenario (N1.5D or NPi400)

GHG Emissions

BLUES: 1.5°C Scenario (N1.5D or NPi400)

Primary Energy Consumption

Electricity Generation (TWh)

Power Sector Emissions (MtCO₂) Note: Industrial and refinery CHP excluded

Liquid Biofuels Production (PJ)

Carbon Capture and Storage (Mt) Fossil and Biomass

Transport Sector – GHG Emissions

Rio de Janeiro Brasil

CENERGIA

Centro de Economia Energética e Ambiental

COPPE/UFRJ

Thank you!

This project has received funding from the **European Union's Horizon 2020 research and innovation programme** under grant agreement No 642147 (CD-LINKS).

Q&A session

To participate in the Q&A Session, please use the chat room provided by the Go-to-Webinar system

Forthcoming Webinar

CMCC-SISC Webinar: Antarctic climate variability over the last 2000 years

Presenter: Barbara **Stenni**, Associate professor of Geochemistry, Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice

Moderator: Carlo **Barbante**, Director, Istituto per la Dinamica dei Processi Ambientali (IDPA), CNR; President, Italian Society for Climate Sciences (SISC)

26 June 2018 12:30 pm CEST

Thank you for attending this CMCC webinar.

This webinar was recorded and will be uploaded to the CMCC website: www.cmcc.it

If you have any further question about the webinar, please email: webinar@cmcc.it

