Global change from anthropogenic forcing will have significant impacts at regional and coastal scales on marine systems and dependent socioeconomic systems and ecosystem services and can strongly interact with regional/local drivers such as fishing, pollution, and eutrophication. A capacity to understand and predict these impacts on regional seas and coasts is essential for developing robust strategies for adaptation and mitigation and therefore for the EU’s fulfilment of UN SDGs 13 and 14 but also 2, 6,8, 9, 11, 12, since regional seas and coastal areas support food production, water quality, and industrial/economic activities such as fisheries and aquaculture). Projections of climate and ocean change have been delivered at global or basin scales using Global Climate or Earth System Models (ESMs). However, such models are not able to provide the necessary resolution of physical processes that determine fluxes of carbon, nutrients, heat, and light which in turn control the growth response of the marine food web and thereby ecosystem services such as food supply to fisheries/aquaculture, water quality control, and carbon sequestration. Another limitation of ESMs is that the representation of the marine food web tends to be highly simplified which in turn limits the ability to capture potential shifts in planktonic community structure and elemental stoichiometry and thereby resulting impacts/feedbacks on services. CE2COAST is the coordinated assemblage and analysis of observational and modelling data to deliver state, trends and variability of pressures on ocean services resulting from ocean and coastal climate and biogeochemical change at the European and global scale.
Cities & Coasts, Future Earth, Ocean, Water, Food and Land Use.